Contrôle optimal inverse de systèmes de mouvements biologiques redondants
Auteur / Autrice : | Adina Panchea |
Direction : | Nacim Ramdani |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences et technologies industrielles |
Date : | Soutenance le 10/12/2015 |
Etablissement(s) : | Orléans |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Informatique, Physique Théorique et Ingénierie des Systèmes (Centre-Val de Loire ; 2012-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Pluridisciplinaire de recherche en ingénierie des systèmes, mécanique et énergétique (Orléans ; 2008-....) |
Jury : | Président / Présidente : Francesco Nori |
Examinateurs / Examinatrices : Nacim Ramdani, Francesco Nori, Philippe Souères, Frédéric Jean, Olivier Buttelli, Philippe Fraisse, David Daney | |
Rapporteur / Rapporteuse : Philippe Souères, Frédéric Jean |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse aborde les problèmes inverses de contrôle optimal (IOCP) pour trouver les fonctions de coûts pour lesquelles les mouvements humains sont optimaux. En supposant que les observations de mouvements humains sont parfaites, alors que le processus de commande du moteur humain est imparfait, nous proposons un algorithme de commande approximative optimale. En appliquant notre algorithme pour les observations de mouvement humaines collectées: mouvement du bras humain au cours d'une tâche de vissage industrielle, une tâche de suivi visuel d’une cible et une tâche d'initialisation de la marche, nous avons effectué une analyse en boucle ouverte. Pour les trois cas, notre algorithme a trouvé les fonctions de coût qui correspondent mieux ces données, tout en satisfaisant approximativement les Karush-Kuhn-Tucker (KKT) conditions d'optimalité. Notre algorithme offre un beau temps de calcul pour tous les cas, fournir une opportunité pour son utilisation dans les applications en ligne. Pour la tâche de suivi visuel d’une cible, nous avons étudié une modélisation en boucle fermée avec deux boucles de rétroaction PD. Avec des données artificielles, nous avons obtenu des résultats cohérents en termes de tendances des gains et les critères trouvent par notre algorithme pour la tâche de suivi visuel d’une cible. Dans la seconde partie de notre travail, nous avons proposé une nouvelle approche pour résoudre l’IOCP, dans un cadre d'erreur bornée. Dans cette approche, nous supposons que le processus de contrôle moteur humain est parfait tandis que les observations ont des erreurs et des incertitudes d'agir sur eux, étant imparfaite. Les erreurs sont délimitées avec des limites connues, sinon inconnu. Notre approche trouve l'ensemble convexe de de fonction de coût réalisables avec la certitude qu'il comprend la vraie solution. Nous numériquement garanties en utilisant des outils d'analyse d'intervalle.