Constrained distributed state estimation for surveillance missions using multi-sensor multi-robot systems
Mots clés
Résumé
Les algorithmes distribués sont dorénavant présents dans de nombreux aspects de l'Automatique avec des applications pour des systèmes multi-robots, des réseaux de capteurs, couvrant des sujets tels que la commande, l'estimation d'état, la détection de défauts, la détection et l'atténuation des cyberattaques sur les systèmes cyber-physiques, etc. En effet, les systèmes distribués sont confrontés à des problèmes tels que l'extensibilité à un grand nombre d'agents et la communication entre eux. Dans les applications de systèmes multi-agents (par exemple, flotte de robots mobiles, réseaux de capteurs), il est désormais courant de concevoir des algorithmes d'estimation d'état de manière distribuée afin que les agents puissent accomplir leurs tâches sur la base de certaines informations partagées au sein de leur voisinage. Dans le cas de missions de surveillance, un réseau de capteurs statique et à faible coût (par exemple, caméras) pourrait ainsi être déployé pour localiser de manière distribuée des intrus dans une zone donnée. Dans ce contexte, l'objectif principal de cette thèse est de concevoir des observateurs distribués pour estimer l'état d'un système dynamique (par exemple, flotte de robots intrus) avec une charge de calcul réduite tout en gérant efficacement les contraintes et les incertitudes. Cette thèse propose de nouveaux algorithmes d'estimation distribuée à horizon glissant avec une pré-estimation de type Luenberger dans la formulation du problème local résolu par chaque capteur, entraînant une réduction significative du temps de calcul, tout en préservant la précision de l'estimation. En outre, ce manuscrit propose une stratégie de consensus pour améliorer le temps de convergence des estimations entre les capteurs sous des conditions de faible observabilité (par exemple, des véhicules intrus non visibles par certaines caméras). Une autre contribution concerne l'amélioration de la convergence de l'erreur d'estimation en atténuant les problèmes de non observabilité à l'aide d'un mécanisme de diffusion de l'information sur plusieurs pas (appelé "l-step") entre voisinages. L'estimation distribuée proposée est conçue pour des scénarios réalistes de systèmes à grande échelle impliquant des mesures sporadiques (c'est-à-dire disponibles à des instants a priori inconnus). À cette fin, les contraintes sur les mesures (par exemple, le champ de vision de caméras) sont incorporées dans le problème d'optimisation à l'aide de paramètres binaires variant dans le temps. L'algorithme développé est implémenté sous le middleware ROS (Robot Operating System) et des simulations réalistes sont faites à l'aide de l'environnement Gazebo. Une validation expérimentale de la technique de localisation proposée est également réalisée pour un système multi-véhicules (SMV) à l'aide d'un réseau de capteurs statiques composé de caméras à faible coût qui fournissent des mesures sur les positions d'une flotte de robots mobiles composant le SMV. Les algorithmes proposés sont également comparés à des résultats de la littérature en considérant diverses métriques telles que le temps de calcul et la précision des estimées.