Asymptotic approaches in financial risk management

par Adrien Genin

Thèse de doctorat en Mathématiques. Mathématiques appliquées

Sous la direction de Peter Tankov.

  • Titre traduit

    Approches asymptotiques en gestion des risques financiers


  • Résumé

    Cette thèse se propose de traiter de trois problèmes de gestion des risques financiers en utilisant différentes approches asymptotiques. La première partie présente un algorithme Monte Carlo d’échantillonnage d’importance pour la valorisation d’options asiatiques dans des modèles exponentiels de Lévy. La mesure optimale d’échantillonnage d’importance est obtenue grâce à la théorie des grandes déviations. La seconde partie présente l’étude du comportement asymptotique de la somme de n variables aléatoires positives et dépendantes dont la distribution est un mélange log-normal ainsi que des applications en gestion des risque de portefeuille d’actifs. Enfin, la dernière partie, présente une application de la notion de variations régulières pour l’analyse du comportement des queues de distribution d’un vecteur aléatoire dont les composantes suivent des distributions à queues épaisses et dont la structure de dépendance est modélisée par une copule Gaussienne. Ces résultats sont ensuite appliqués au comportement asymptotique d’un portefeuille d’options dans le modèle de Black-Scholes


  • Résumé

    This thesis focuses on three problems from the area of financial risk management, using various asymptotic approaches. The first part presents an importance sampling algorithm for Monte Carlo pricing of exotic options in exponential Lévy models. The optimal importance sampling measure is computed using techniques from the theory of large deviations. The second part uses the Laplace method to study the tail behavior of the sum of n dependent positive random variables, following a log-normal mixture distribution, with applications to portfolio risk management. Finally, the last part employs the notion of multivariate regular variation to analyze the tail behavior of a random vector with heavy-tailed components, whose dependence structure is modeled by a Gaussian copula. As application, we consider the tail behavior of a portfolio of options in the Black-Scholes model


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.