Thèse soutenue

Étude de la déposition et de l'absorption de la matière organique à l'échelle subatomique par des techniques expérimentales et de simulation numérique

FR  |  
EN
Auteur / Autrice : Canan Turgut
Direction : Mohammed BelmahiPatrick Philipp
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance le 05/03/2015
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : EMMA - Ecole Doctorale Energie - Mécanique - Matériaux
Partenaire(s) de recherche : Laboratoire : Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz) - Luxembourg Institute of Science and Technology
Jury : Président / Présidente : Gérard Henrion
Examinateurs / Examinatrices : Kai Nordlund
Rapporteurs / Rapporteuses : Arnaud Delcorte, Serge Della Negra

Résumé

FR  |  
EN

Les traitements plasma présentent un outil efficace, économique et écologique pour la fonctionnalisation de surfaces. Pour cette technique, l’étude du dépôt et de l’adhésion de molécules et précurseurs dans le régime de la sous-monocouche présente un intérêt majeur, car elle définit les propriétés de la surface et l’adhésion de la couche déposée sur le substrat. L’adhésion des molécules lors de la phase initiale du dépôt est contrôlée par les espèces dans le plasma ainsi que par leurs distributions énergétiques et angulaires. Dans le cadre de ce projet, une approche multidisciplinaire combinant calculs DFT et techniques expérimentales pour la préparation et la caractérisation des dépôts dans la sous-monocouche a été utilisée. Des dépôts de PS et PMMA, préparés par bombardement d’Ar sur une surface d’Ag, ont été caractérisés par XPS et ToF-SIMS. La quantité de matière déposée augmente bien avec le temps de dépôt, ou la dose d’irradiation. Les analyses par TOF-SIMS ont également montré que la proportion des grands fragments augmente au détriment des petits. Ceci est contraire aux résultats attendus et peut seulement être expliqué par la recombinaison de petits fragments sur la surface du collecteur. Cette hypothèse est supporté des calculs DFT qui ont montré que l’énergie d’adsorption des petits fragments est plus grande que celle des grands et, par conséquent, leur probabilité d’adsorption doit être également plus élevée. Les calculs DFT ont été étendus sur d’autres substrats, notamment du Si, Pt et Al2O3 et ont montrés que l’énergie d’adhésion est la plus élevée sur Si et Pt