Caractérisation in operando de l’endommagement par électromigration des interconnexions 3D : Vers un modèle éléments finis prédictif
Auteur / Autrice : | Simon Gousseau |
Direction : | Pierre Montmitonnet, Karim Inal |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences et génie des matériaux |
Date : | Soutenance le 26/01/2015 |
Etablissement(s) : | Paris, ENMP |
Ecole(s) doctorale(s) : | École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de mise en forme des matériaux (Sophia Antipolis, Alpes-Maritimes) |
Jury : | Président / Présidente : Yves Wouters |
Examinateurs / Examinatrices : Pierre Montmitonnet, Karim Inal, Stéphane Moreau, Hélène Fremont, Philippe Perdu | |
Rapporteur / Rapporteuse : Roland Fortunier |
Mots clés
Mots clés contrôlés
Résumé
L'intégration 3D, mode de conception par empilement des puces, vise à la fois la densification des systèmes et la diversification des fonctions. La réduction des dimensions des interconnexions 3D et l'augmentation de la densité de courant accroissent les risques liés à l'électromigration. Une connaissance précise de ce phénomène est requise pour développer un modèle numérique prédictif de la défaillance et ainsi anticiper les difficultés dès le stade de la conception des technologies. Une méthode inédite d'observation in operando dans un MEB de l'endommagement par électromigration des interconnexions 3D est conçue. La structure d'étude avec des vias traversant le silicium (TSV) « haute densité » est testée à 350 °C avec une densité de courant injectée de l'ordre de 1 MA/cm², et simultanément caractérisée. La réalisation régulière de micrographies informe sur la nucléation des cavités, forcée dans la ligne de cuivre au-dessus des TSV, et sur le scénario de leur évolution. La formation d'ilots et la guérison des cavités sont également observées au cours des essais (quelques dizaines à centaines d'heures). Une relation claire est établie entre l'évolution des cavités et celle de la résistance électrique du dispositif. Les différents essais, complétés par des analyses post-mortem (FIB-SEM, EBSD, MET) démontrent l'impact de la microstructure sur le mécanisme de déplétion. Les joints de grains sont des lieux préférentiels de nucléation et influencent l'évolution des cavités. Un effet probable de la taille des grains et de leur orientation cristalline est également révélé. Enfin, l'étude se consacre à l'implémentation d'un modèle multiphysique dans un code éléments finis de la phase de nucléation des cavités. Ce modèle est constitué des principaux termes de gestion de la migration.