Estimation des paramètres d'un système à partir de données fortement quantifiées, application aux MEMS
Auteur / Autrice : | Kian Jafaridinani |
Direction : | Jérôme Juillard |
Type : | Thèse de doctorat |
Discipline(s) : | Electronique (STIC) |
Date : | Soutenance le 09/07/2012 |
Etablissement(s) : | Supélec |
Ecole(s) doctorale(s) : | Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015) |
Jury : | Président / Présidente : Éric Walter |
Examinateurs / Examinatrices : Yann Le Gorrec, Morgan Roger | |
Rapporteur / Rapporteuse : Salvador Mir, Alina Voda |
Mots clés
Résumé
Bien que les dimensions caractéristiques des systèmes électroniques aient été réduites aux micro- ou nano-échelles, leur performance reste très sensible à des facteurs extérieurs. Les variations lors du processus de fabrication des microsystèmes et celles dans leurs conditions de fonctionnement (température, humidité, pression) sont la cause habituelle de ces dispersions. Par conséquent, il est important de co-intégrer des routines de self-test ou d'auto-ajustement pour ces micro-dispositifs. La plupart des méthodes d'estimation des paramètres du système existantes sont fondées sur la mise en œuvre de mesures numériques haute résolution de la sortie du système. Leur mise en œuvre nécessite ainsi un long temps de conception et une grande surface de silicium, ce qui augmente le coût de ces micro-dispositifs. Les méthodes d'estimation de paramètres basées sur les observations binaires ont été présentées comme des méthodes d'identification alternatives, nécessitant seulement un Convertisseur Analogique-Numérique (CAN) 1-bit.Dans cette thèse, nous proposons une nouvelle méthode d'identification récursive pour le problème d'estimation des paramètres à partir des observations binaires. Un algorithme d'identification en ligne avec de faibles besoins de stockage et une complexité algorithmique réduite est introduit. Nous prouvons la convergence asymptotique de cette méthode sous certaines hypothèses. Ensuite, nous montrons par des simulations de Monte-Carlo que ces hypothèses ne doivent pas nécessairement être respectées dans la pratique pour obtenir une bonne performance de la méthode. De plus, nous présentons la première application expérimentale de cette méthode dédiée au self-test de MEMS intégrés. La méthode de «Built-In Self-Test» en ligne proposée est très intéressante pour le self-test de capteurs, car elle nécessite des ressources faibles de stockage, un seul CAN 1-bit et un seul CNA 1-bit qui peut être facilement mis en œuvre dans une petite surface de silicium avec une consommation réduite d'énergie.