Thèse soutenue

Optimal switching and reflected backward stochastic differential equations

EN
Auteur / Autrice : Brahim El Asri
Direction : Saïd Hamadène
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 2010
Etablissement(s) : Le Mans
Partenaire(s) de recherche : Laboratoire : Laboratoire manceau de mathématiques

Résumé

FR  |  
EN

Dans les deux premières parties, nous nous intéressons à un problème de Switching à plusieurs régimes de fonctionnement, les fonctions de profits sont à croissance polynomiale arbitraire et les fonctions de switching d’un régime à un autre (coût de Switching) non constantes dépendant de l’état et du temps. Dans la première partie, nous étudions essentiellement le cadre Markovien en horizon fini et dans la seconde nous étudions le cadre général en horizon infini. En horizon fini nous montrons que le théorème de vérification associé à notre problème qui s’exprime par l’intermédiaire d’un système d’EDP paraboliques avec obstacles inter-connectés à une solution unique au sens de viscosité. Cette solution est construite à partir du système d’EDSR réfléchies et le principe de la programmation dynamique associés au problème du switching optimal. Puis en horizon infini, nous établissons le théorème de vérification pour lequel nous montrons l’existence d’une solution en utilisant la théorie de l’enveloppe de Snell et des équations différentielles stochastiques rétrogrades. Nous étudions ensuite le cadre markovien et nous montrons que le théorème de vérification associé à notre problème qui s’exprime par l’intermédiaire d’un système d’EDP elliptiques avec obstacles inter-connectés à une solution unique au sens de viscosité. Enfin, dans la dernière partie, nous étudions les EDSRs réfléchies à deux barrières continues où les coefficients sont supposés simplement p-intégrables avec р Є (1; 2). En utilisant la notion de solution locale, nous démontrons que cette équation admet une solution unique. Comme applications, nous abordons un problème de jeu de Dynkin puis la solution au sens de viscosité d’un problème d’équation aux dérivées partielles avec deux obstacles.