Thèse soutenue

Prédiction intelligente des trajectoires de véhicules, dans différents scenarii de conduite autonome

FR  |  
EN
Auteur / Autrice : Thomas Gilles
Direction : Fabien Moutarde
Type : Thèse de doctorat
Discipline(s) : Informatique temps réel, robotique et automatique - Paris
Date : Soutenance le 21/04/2023
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : Ecole doctorale Ingénierie des Systèmes, Matériaux, Mécanique, Énergétique (Paris)
Partenaire(s) de recherche : Laboratoire : Centre de robotique (Paris)
établissement de préparation de la thèse : École nationale supérieure des mines (Paris ; 1783-....)
Jury : Président / Présidente : David Filliat
Examinateurs / Examinatrices : Fabien Moutarde, Alexandre Alahi, Fawzi Nashashibi, Anne-Marie Spalanzani, John Folkesson, Dzmitry Tsishkou, Bogdan Stanciulescu
Rapporteur / Rapporteuse : Alexandre Alahi, Fawzi Nashashibi

Résumé

FR  |  
EN

Les récentes avancées dans les méthodes d'apprentissage automatique ont permis des progrès considérables dans le domaine de la conduite autonome, notamment dans l'étape de perception, grâce à l'apprentissage profond et aux réseaux de neurones, combinés aux progrès généralisés des capteurs, de la localisation et des techniques de proprioception. L'attention se porte donc désormais sur les étapes suivantes du pipeline de la conduite autonome, où la prédiction joue un rôle important. Une fois que les agents routiers environnants ont été détectés, suivis et filtrés, le système de conduite doit prédire leur trajectoire future et planifier en conséquence pour éviter les collisions.Cette prédiction de trajectoire doit répondre à de multiples exigences. Tout d'abord, elle doit être évidemment précise et sûre, afin que son résultat puisse être utilisé de manière fiable dans les processus suivants. Le futur peut présenter de multiples possibilités, qu'il n'est pas toujours possible de differencier sur la seule base des données historiques passées. La prévision doit donc être multimodale, en prédisant plusieurs futurs probables simultanés. Puisque la prévision doit être faite sur tous les agents environnants, et que les comportements de ces agents sont très influencés par leurs interactions, le modèle doit prendre en compte ces interactions, et ses prévisions multimodales doivent être cohérentes entre elles. Enfin, pour la sécurité et la fiabilité, la prédiction de trajectoire doit être facile à interpréter, largement évaluée, capable de fournir des évaluations de confiance et conçue avec son utilisation finale dans le processus global à l'esprit.Dans la première partie de cette thèse, après avoir récapitulé les méthodes existantes de prévision de trajectoire n'utilisant pas l'apprentissage machine, nous étudions les différentes représentations et approches existantes pour l'estimation de mouvement par apprentissage. Nous proposons ensuite d'aborder le problème de la prédiction de trajectoire en utilisant des grilles probabilistes pour faciliter la multimodalité. Nous concevons trois manières différentes de générer ces cartes thermiques et nous les évaluons les unes par rapport aux autres et par rapport à l'état de l'art existant. Nous fournissons également une méthode d'extraction complète pour obtenir les trajectoires réelles à partir de ces cartes de probabilités, et nous étudions les avantages et les inconvénients de ces méthodes de grilles par rapport à d'autres approches couramment utilisés. Dans le chapitre suivant, nous nous concentrons sur la prédiction multi-agents, et plus particulièrement sur les prédictions cohérentes au niveau de la scène, pour ce type de modèles de grilles par le biais de l'extraction et d'une seconde étape apprise. Enfin, nous explorons différentes manières d'étendre l'évaluation des modèles de prédiction par l'évaluation de l'incertitude, la calibration et l'analyse de la généralisabilité entre jeux de données.