Méthodes de décomposition temporelle pour la gestion optimale de stockages énergétiques sous incertitudes
Auteur / Autrice : | Tristan Rigaut |
Direction : | Frédéric Bourquin, Jean-Philippe Chancelier |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 16/05/2019 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Instrumentation, Simulation et Informatique Scientifique (Marne-la-Vallée) - Laboratoire Instrumentation- Simulation et Informatique Scientifique / IFSTTAR/COSYS/LISIS |
Jury : | Président / Présidente : Andy Philpott |
Examinateurs / Examinatrices : Frédéric Bourquin, Jean-Philippe Chancelier, Pierre Carpentier, Julien Waeytens, Pierre Haessig | |
Rapporteurs / Rapporteuses : Alois Pichler, Nadia Oudjane |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
L'évolution du stockage d'énergie permet de développer des méthodes innovantes de gestion de l'énergie à une échelle locale. Les micro réseaux électriques sont une forme émergente de petits réseaux électriques munis de production locale, de stockage d'énergie et en particulier d'un système de gestion de l'énergie (EMS pour Energy Management System). De nombreuses études et recherches scientifiques ont été menées pour proposer diverses stratégies d'implémentation de ces EMS. Néanmoins il n'existe pas à ce jour d'articulation claire et formelle de ces méthodes permettant leur comparaison. L'une des principales difficultés pour les EMS, est la gestion des dynamiques des différents systèmes énergétiques. Les variations de courant vont à la vitesse de l'électron, la production d'énergie solaire photovoltaïque varie au gré des nuages et différentes technologies de stockages peuvent réagir plus ou moins vites à ces phénomènes imprévisibles. Nous étudions dans ce manuscrit, un formalisme mathématique et des algorithmes basés sur la théorie de l'optimisation stochastique multi-étapes et la Programmation Dynamique. Ce formalisme permet de modéliser et de résoudre des problèmes de décisions inter-temporelles en présence d'incertitudes, à l'aide de méthodes de décomposition temporelle que nous appliquons à des problèmes de gestion de l'énergie. Dans la première partie de cette thèse, ''Contributions à la décomposition temporelle en optimisation stochastique multi-étapes'', nous présentons le formalisme général que nous utilisons pour décomposer en temps les problèmes d'optimisation stochastique avec un grand nombre de pas de temps. Nous classifions ensuite différentes méthodes de contrôle optimal au sein de ce formalisme. Dans la seconde partie, ''Optimisation stochastique de stockage d'énergie pour la gestion des micro réseaux'', nous comparons différentes méthodes, introduites dans la première partie, sur des cas réels. Dans un premier temps, nous contrôlons une batterie ainsi que des ventilations dans une station de métro récupérant de l'énergie de freinage des trains, en comparant quatre algorithmes différents. Dans un second temps, nous montrons comment ces algorithmes pourraient être implémentés sur un système réel à l'aide d'une architecture de contrôle hiérarchique de micro réseaux électrique en courant continu. Le micro réseaux étudié connecte cette fois ci de l'énergie photovoltaïque à une batterie, une super-capacité et à une charge électrique. Enfin nous appliquons le formalisme de décomposition par blocs temporels présenté dans la première partie pour traiter un problème de gestion de charge de batterie mais aussi de son vieillissement long terme. Ce dernier chapitre introduit 2 algorithmes basés sur la décomposition par blocs temporels qui pourraient être utilisés pour le contrôle hiérarchique de micro réseaux ou les problèmes d'optimisation stochastique présentant un grand nombre de pas de temps. Dans la troisième et dernière partie, ''Logiciels et expériences'', nous présentons DynOpt.jl un paquet développé en langage Julia qui a permis de développer toutes les applications de cette thèse et bien d'autres. Nous étudions enfin l'utilisation de ce paquet dans un cas de pilotage réel de système énergétique : la gestion intelligente de la température dans une maison de l'équipement Sense City