Maximum de vraisemblance empirique pour la détection de changements dans un modèle avec un nombre faible ou très grand de variables
Auteur / Autrice : | Zahraa Salloum |
Direction : | Gabriela Ciuperca |
Type : | Thèse de doctorat |
Discipline(s) : | Statistiques |
Date : | Soutenance le 19/01/2016 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale InfoMaths (Lyon ; 2009-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Camille Jordan (Rhône ; 2005-....) |
établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....) | |
Jury : | Président / Présidente : Gilles Celeux |
Examinateurs / Examinatrices : Sophie Dabo-Niang, Céline Roget-Vial | |
Rapporteurs / Rapporteuses : Jean-Marc Bardet, Cristina Butucea, Sergueï Dachian |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse est consacrée à tester la présence de changements dans les paramètres d'un modèle de régression non-linéaire ainsi que dans un modèle de régression linéaire en très grande dimension. Tout d'abord, nous proposons une méthode basée sur la vraisemblance empirique pour tester la présence de changements dans les paramètres d'un modèle de régression non-linéaire. Sous l'hypothèse nulle, nous prouvons la consistance et la vitesse de convergence des estimateurs des paramètres de régression. La loi asymptotique de la statistique de test sous l'hypothèse nulle nous permet de trouver la valeur critique asymptotique. D'autre part, nous prouvons que la puissance asymptotique de la statistique de test proposée est égale à 1. Le modèle épidémique avec deux points de rupture est également étudié. Ensuite, on s'intéresse à construire les régions de confiance asymptotiques pour la différence entre les paramètres de deux phases d'un modèle non-linéaire avec des regresseurs aléatoires en utilisant la méthode de vraisemblance empirique. On montre que le rapport de la vraisemblance empirique a une distribution asymptotique χ2. La méthode de vraisemblance empirique est également utilisée pour construire les régions de confiance pour la différence entre les paramètres des deux phases d'un modèle non-linéaire avec des variables de réponse manquantes au hasard (Missing At Random (MAR)). Afin de construire les régions de confiance du paramètre en question, on propose trois statistiques de vraisemblance empirique : la vraisemblance empirique basée sur les données cas-complète, la vraisemblance empirique pondérée et la vraisemblance empirique par des valeurs imputées. On prouve que les trois rapports de vraisemblance empirique ont une distribution asymptotique χ2. Un autre but de cette thèse est de tester la présence d'un changement dans les coefficients d'un modèle linéaire en grande dimension, où le nombre des variables du modèle peut augmenter avec la taille de l'échantillon. Ce qui conduit à tester l'hypothèse nulle de non-changement contre l'hypothèse alternative d'un seul changement dans les coefficients de régression. Basée sur les comportements asymptotiques de la statistique de rapport de vraisemblance empirique, on propose une simple statistique de test qui sera utilisée facilement dans la pratique. La normalité asymptotique de la statistique de test proposée sous l'hypothèse nulle est prouvée. Sous l'hypothèse alternative, la statistique de test diverge