Thèse soutenue

Analyse haute résolution de la morphologie des paysages et des processus à partir de LiDAR aéroporté répété et simulation hydraulique

FR  |  
EN
Auteur / Autrice : Thomas Bernard
Direction : Dimitri LaguePhilippe Davy
Type : Thèse de doctorat
Discipline(s) : Sciences de la terre et de l'environnement
Date : Soutenance le 24/03/2022
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Écologie Géosciences Agronomie Alimentation (Rennes ; 2016-2022)
Partenaire(s) de recherche : Laboratoire : Géosciences (Rennes)
Jury : Président / Présidente : Simon Marius Mudd
Examinateurs / Examinatrices : Cécile Robin, André Stumpf
Rapporteurs / Rapporteuses : Veerle Vanacker, Stéphane Bonnet

Résumé

FR  |  
EN

L’objectif fondamental de la géomorphologie est l’identification et la caractérisation des processus façonnant les paysages. En fournissant une représentation 3D haute précision et haute densité des paysages, le LiDAR aéroporté a révolutionné notre capacité à extraire des informations sur la topographie fournissant ainsi de nouvelles opportunités pour l’identification et la compréhension des processus géomorphologiques. Ce potentiel reste sous-exploité dans de nombreuses problématiques en géomorphologie du fait de l’incapacité des méthodes d’analyse actuelles à exploiter la richesse d’information fournie par le LiDAR aéroporté. Cette thèse intègre les derniers développements sur la simulation hydraulique 2D et la détection de changements 3D afin d’améliorer les méthodes d’analyse pour (i) la description de la structure des paysages fluviaux et (ii) l’identification et l’analyse géométrique des glissements de terrain à haute résolution. Les principaux résultats montrent que la simulation hydraulique 2D permet la définition d’indicateurs hydro-géomorphiques prenant pleinement en compte la structure haute résolution des écoulements de surface. Ces indicateurs permettent une meilleure identification des connexions versants-rivières et la caractérisation de la géométrie hydraulique des chenaux. L’intégration de la détection de changement 3D permet d’exploiter la structure 3D des données LiDAR pour la création d’inventaires robustes, complets et objectifs des glissements de terrain. Cette approche permet une meilleure quantification du volume des glissements de terrain en comparaison des approches traditionnelles.