Thèse soutenue

Etude de la rupture dynamique des élastomères : sur le rôle joué par la viscoélasticité

FR  |  
EN
Auteur / Autrice : Vasudevan Kamasamudram
Direction : Michel CoretNicolas Moës
Type : Thèse de doctorat
Discipline(s) : Mécanique des Solides, des Matériaux, des structures et des surfaces
Date : Soutenance le 09/12/2021
Etablissement(s) : Ecole centrale de Nantes
Ecole(s) doctorale(s) : Sciences de l'ingénierie et des systèmes (Nantes Université)
Partenaire(s) de recherche : Laboratoire : Institut de Recherche en Génie Civil et Mécanique (Nantes)
Jury : Président / Présidente : Patrick Le Tallec
Examinateurs / Examinatrices : Michel Coret, Nicolas Moës, Patrick Le Tallec, Rafael Estevez, Patrice Hauret, Julie Diani, Vito Rubino, Gergely Molnar
Rapporteurs / Rapporteuses : Rafael Estevez, Patrice Hauret

Résumé

FR  |  
EN

Cette thèse s’intéresse à la propagation d'une fissure dynamique à travers une membrane en élastomère (polyuréthane). Cette problématique a été étudiée expérimentalement au cours d’une étude précédente. Dans cette étude, sous certaines conditions de chargement, la vitesse de propagation des fissures dépasse la vitesse des ondes de cisaillement. De telles fissures sont appelées fissures transsoniques. Deux hypothèses principales ont été avancées dans littérature pour expliquer l'observation des fissures transsoniques. L'une d'elles repose sur la rigidification hyperélastique du matériau au voisinage de la pointe de fissure, tandis que l'autre repose sur le raidissement viscoélastique. Cette étude examine ces deux hypothèses et détermine que le raidissement viscoélastique est l'ingrédient nécessaire (et suffisant). La viscoélasticité linéaire finie a été utilisée en premier lieu. Dans un second temps, un modèle cohésif dépendant de la vitesse a été utilisé pour prédire la vitesse de propagation de la fissure. La vitesse de fissure s'est avérée indépendante de la hauteur de l'éprouvette au-delà d'un certain seuil. Un modèle viscoélastique non linéaire a également été mis en œuvre en supposant des conditions de contraintes planes. En utilisant cela, l'énergie dissipée dans le matériau en raison des effets viscoélastiques et l'énergie consommée par les processus de rupture ont été calculées explicitement. Les résultats montrent que la majorité de l'énergie de déformation est consommée sous forme de dissipation viscoélastique dans le matériau. L’énergie restante est consommée par les processus de rupture.