Thèse soutenue

Analyse mathématique de la dynamique de réseaux de régulation biologique

FR  |  
EN
Auteur / Autrice : Ousmane Diop
Direction : Vincent Fromion
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 08/12/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication
Partenaire(s) de recherche : Laboratoire : Mathématiques et Informatique Appliquées  du Génome à l'Environnement (Jouy-en-Josas, Yvelines)
référent : Faculté des sciences d'Orsay
Jury : Président / Présidente : Madalena Chaves
Examinateurs / Examinatrices : Etienne Farcot, Claudine Chaouiya, Franck Delaunay, Dorothée Normand-Cyrot, Thomas Schiex
Rapporteurs / Rapporteuses : Etienne Farcot, Claudine Chaouiya

Résumé

FR  |  
EN

Dans cette thèse, nous nous intéressons à l'analyse qualitative de la dynamique de deux cycles biologiques centraux dans les cellules eucaryotes, le cycle de division cellulaire et l'horloge circadienne. Nous utilisons pour cela des réseaux Booléens asynchrones, bien adaptés à une analyse qualitative. Dans ces réseaux, les cycles sont capturés par des attracteurs complexes, pouvant contenir des centaines d'états. Nous proposons une nouvelle méthode d'analyse de ces attracteurs complexes, basée sur la construction d'un graphe résumé. Cette méthode permet de comparer les trajectoires contenues l'attracteur avec les propriétés qualitatives du cycle biologique. Nous illustrons notre méthode sur un modèle du cycle cellulaire de la littérature et sur un modèle de l'horloge circadienne, que nous avons construit à partir d'un modèle continu existant. Dans ces deux modèles, notre méthode s'est montrée efficace pour visualiser la structure de l'attracteur complexe et le comparer avec un cycle biologique. En combinant le graphe résumé avec une chaîne de Markov, nous estimons les proportions de temps passé dans les phases décrites par les oscillations. En le combinant avec une méthode d'inférence Booléenne, nous montrons également comment ajuster localement la dynamique asymptotique du modèle, afin de forcer certaines propriétés dynamiques. Ces deux applications montrent l'intérêt de notre méthode pour la modélisation et l'analyse de réseaux de régulation cellulaire.