Thèse soutenue

Modélisation Hamiltonienne à ports et commande distribuée de structures flexibles : application aux endoscopes biomédicaux à actionneurs à base de polymère électro-actif

FR  |  
EN
Auteur / Autrice : Ning Liu
Direction : Yann Le gorrecYongxin Wu
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 15/12/2020
Etablissement(s) : Bourgogne Franche-Comté
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : FEMTO-ST Franche Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies - Franche-Comté Électronique Mécanique- Thermique et Optique - Sciences et Technologies (UMR 6174) / FEMTO-ST
Etablissement de préparation : Université de Franche-Comté (1971-....)
Jury : Président / Présidente : Laurent Lefèvre
Examinateurs / Examinatrices : Yann Le gorrec, Yongxin Wu, Laurent Lefèvre, Thomas Meurer, Edouard Laroche, Françoise Couenne
Rapporteurs / Rapporteuses : Thomas Meurer, Edouard Laroche

Résumé

FR  |  
EN

Les travaux exposés dans cette thèse traitent de la modélisation multiphysique et de la commande distribuée de structures flexibles actionnées à l’aide de polymères électro-actifs de type Ionic Polymer Metal Composite (IPMC). Dans un premier temps, nous proposons une formulation Hamiltonnienne à ports de l’actionneur IPMC afin de tenir compte des couplages multiphysiques et multiéchelles. Des multiplicateurs de Lagrange sont utilisés pour gérer les contraintes mécaniques apparaissant au sein de l’actionneur. La structure mécanique de la structure flexible est quant à elle modélisée en 1D à l’aide de modèles de poutres et en 2D à l’aide d’un modèle de coques fines. Dans un second temps, deux méthodes de discrétisation préservant la structure sont présentées et étendues aux systèmes Hamiltoniens à ports de dimension infinie avec dissipation et entrée distribuée. Le modèle de l’actionneur est validé expérimentalement à l’aide d’une discrétisation de type différences finies sur grilles en quinconces. Dans un troisième temps, nous développons sur un modèle simplifié de type corde vibrante, une loi de commande distribuée dans le domaine à l’aide de patches, permettant de modeler la fonction d’énergie globale du système et d’injecter de la dissipation.