Thèse soutenue

Co-intégration de mémoires résistives dans des technologies CMOS

FR  |  
EN
Auteur / Autrice : Hussein Bazzi
Direction : Hassen AzizaAdnan HarbMathieu Moreau
Type : Thèse de doctorat
Discipline(s) : Sciences pour l'ingénieur. Micro et nanoélectronique
Date : Soutenance le 04/12/2020
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : École doctorale Sciences pour l'Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (Marseille)
Partenaire(s) de recherche : Laboratoire : Institut Matériaux Microélectronique Nanosciences de Provence (Marseille ; Toulon ; 2008-….)
Jury : Président / Présidente : Patrick Girard
Examinateurs / Examinatrices : Rouwaida Kanj, Gilles Micolau
Rapporteur / Rapporteuse : Amer Baghdadi

Résumé

FR  |  
EN

De nombreuses applications (internet des objets, systèmes embarqués automobiles et médicales, intelligence artificielle) ont besoin d’un circuit intégré (ou SoC pour System on Chip) avec des mémoires non volatiles embarquées performantes pour fonctionner de manière optimale. Bien que la mémoire Flash soit largement utilisée aujourd'hui, cette technologie nécessite une tension élevée pour les opérations de programmation et présente des problèmes de fiabilité difficiles à gérer au-delà du nœud technologique 18 nm, augmentant les coûts de conception et de fabrication des circuits. Dans ce contexte, l'industrie du semi-conducteur est à la recherche d’une mémoire non volatile alternative pouvant remplacer les mémoires Flash. Parmi les candidats actuellement étudiés (MRAM - mémoire à accès aléatoire magnétique, PCM - mémoire à changement de phase, FeRAM - mémoire à accès aléatoire Ferroélectrique), les mémoires résistives (RRAM) offrent de meilleures performances sur différents points capitaux : compatibilité avec le processus de fabrication standard CMOS, consommation de courant, rapidité de fonctionnement, etc. La technologie RRAM peut être aisément introduite dans n'importe quel flot de conception ouvrant la voie au développement de nouvelles architectures qui répondent à l’engorgement des systèmes classiques Von Neumann. Dans cette thèse, l'objet principal est de montrer le potentiel d’intégration des dispositifs RRAM avec la technologie CMOS, à l’aide de simulation et de mesures électriques, afin d’élaborer différentes structures hybrides : mémoires à accès aléatoire statique (SRAM) non volatiles, générateurs de nombres aléatoires (TRNG) et réseaux de neurones artificiels