Thèse soutenue

Apprentissage statistique à partir de données multimodales de génétique et de neuroimagerie pour la prédiction de la maladie d'Alzheimer

FR  |  
EN
Auteur / Autrice : Pascal Lu
Direction : Olivier Colliot
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 26/11/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Institut du cerveau (Paris ; 2009-....) - Institut du cerveau et de la moelle épinière (Paris). Algorithmes, modèles et méthodes pour les images et les signaux du cerveau humain sain et pathologique
Jury : Président / Présidente : Jean-Daniel Zucker
Examinateurs / Examinatrices : Theodoros Evgeniou
Rapporteur / Rapporteuse : Christophe Ambroise, Agathe Guilloux

Résumé

FR  |  
EN

De nos jours, la maladie d'Alzheimer est la principale cause de démence. Elle provoque des troubles de mémoires et de comportements chez les personnes âgées. La diagnostic précoce de la maladie d'Alzheimer est un sujet actif de recherche. Trois différents types de données jouent un role particulier dans le diagnostic de la maladie d'Alzheimer: les tests cliniques, les données de neuroimagerie et les données génétiques. Les deux premières modalités apportent de l'information concernant l'état actuel du patient. En revanche, les données génétiques permettent d'identifier si un patient est à risque et pourrait développer la maladie d'Alzheimer dans le futur. Par ailleurs, durant la dernière décennie, les chercheurs ont crée des bases de données longitudinales sur la maladie d'Alzheimer et d'importantes recherches ont été réalisées pour le traitement et l'analyse de données complexes en grande dimension. La première contribution de cette thèse sera d'étudier comment combiner différentes modalités dans le but d'améliorer leur pouvoir prédictif dans le contexte de la classification. Nous explorons les modèles multiniveaux permettant de capturer les potentielles interactions entre modalités. Par ailleurs, nous modéliserons la structure de chaque modalité (structure génétique, structure spatiale du cerveau) à travers l'utilisation de pénalités adaptées comme la pénalité ridge pour les images, ou la pénalité group lasso pour les données génétiques. La deuxième contribution de thèse sera d'explorer les modèles permettant de prédire la date de conversion à la maladie d'Alzheimer pour les patients atteints de troubles cognitifs légers. De telles problématiques ont été mises en valeurs à travers de challenge, comme TADPOLE. Nous utiliserons principalement le cadre défini par les modèles de survie. Partant de modèles classiques, comme le modèle d'hasard proportionnel de Cox, du modèle additif d'Aalen, et du modèle log-logistique, nous allons développer d'autres modèles de survie pour la combinaisons de modalités, à travers un modèle log-logistique multiniveau ou un modèle de Cox multiniveau.