Thèse soutenue

Capitaliser les processus d'analyse de traces d'apprentissage : modélisation ontologique & assistance à la réutilisation

FR  |  
EN
Auteur / Autrice : Alexis Lebis
Direction : Vanda LuengoMarie LefèvreNathalie Guin
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 22/05/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : LIP6 (1997-....) - LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône ; 2003-....)
Jury : Président / Présidente : Christophe Marsala
Examinateurs / Examinatrices : Serge Garlatti, Julien Broisin
Rapporteur / Rapporteuse : Catherine Faron, Michel C. Desmarais

Résumé

FR  |  
EN

Cette thèse en informatique porte sur la problématique de la capitalisation des processus d’analyse de traces d’apprentissage au sein de la communauté des Learning Analytics (LA). Il s’agit de permettre de partager, adapter et réutiliser ces processus d’analyse de traces. Actuellement, cette capitalisation est limitée par deux facteurs importants : les processus d’analyse sont dépendants des outils d’analyse qui les mettent en œuvre - leur contexte technique - et du contexte pédagogique pour lequel ils sont menés. Cela empêche de les partager, mais aussi de les ré-exploiter simplement en dehors de leurs contextes initiaux, quand bien même les nouveaux contextes seraient similaires. L’objectif de cette thèse est de fournir des modélisations et des méthodes permettant la capitalisation des processus d’analyse de traces d’apprentissage, ainsi que d’assister les différents acteurs de l’analyse, notamment durant la phase de réutilisation. Pour cela, nous répondons aux trois verrous scientifiques suivant : comment partager et combiner des processus d’analyse mis en œuvre dans différents outils d’analyse ? ; comment permettre de ré-exploiter un processus d’analyse existant pour répondre à un autre besoin d’analyse ? ; comment assister les différents acteurs lors de l’élaboration et de l’exploitation de processus d’analyse ? Notre première contribution, issue d’une synthèse de l’état de l’art, est la formalisation d’un cycle d'élaboration et d'exploitation des processus d'analyse, afin d'en définir les différentes étapes, les différents acteurs et leurs différents rôles. Cette formalisation est accompagnée d’une définition de la capitalisation et de ses propriétés. Notre deuxième contribution répond au premier verrou lié à la dépendance technique des processus d’analyse actuels, et à leur partage. Nous proposons un méta-modèle qui permet de décrire les processus d’analyse indépendamment des outils d’analyse. Ce méta-modèle formalise la description des opérations utilisées dans les processus d'analyse, des processus eux-mêmes et des traces utilisées, afin de s’affranchir des contraintes techniques occasionnées par ces outils. Ce formalisme commun aux processus d’analyse permet aussi d’envisager leur partage. Il a été mis en œuvre et évalué dans un de nos prototypes. Notre troisième contribution traite le deuxième verrou sur la ré-exploitation des processus d’analyse. Nous proposons un framework ontologique pour les processus d'analyse, qui permet d'introduire de manière structurée des éléments sémantiques dans la description des processus d'analyse. Cette approche narrative enrichit ainsi le formalisme précédent et permet de satisfaire les propriétés de compréhension, d’adaptation et de réutilisation nécessaires à la capitalisation. Cette approche ontologique a été mise en œuvre et évaluée dans un autre de nos prototypes. Enfin, notre dernière contribution répond au dernier verrou identifié et concerne de nouvelles pistes d’assistances aux acteurs, notamment une nouvelle méthode de recherche des processus d’analyse, s’appuyant sur nos propositions précédentes. Nous exploitons le cadre ontologique de l’approche narrative pour définir des règles d’inférence et des heuristiques permettant de raisonner sur les processus d’analyse dans leur ensemble (e.g. étapes, configurations) lors de la recherche. Nous utilisons également le réseau sémantique sous-jacent à cette modélisation ontologique pour renforcer l’assistance aux acteurs en leur fournissant des outils d’inspection et de compréhension lors de la recherche. Cette assistance a été mise en œuvre dans un de nos prototypes, et évaluée empiriquement.