Thèse soutenue

Apprentissage à partir de données multimodales pour la classification et la prédiction de la maladie d'Alzheimer

FR  |  
EN
Auteur / Autrice : Jorge Alberto Samper González
Direction : Olivier ColliotTheodoros Evgeniou
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 03/04/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Institut du cerveau et de la moelle épinière (Paris). Algorithmes, modèles et méthodes pour les images et les signaux du cerveau humain sain et pathologique
Jury : Président / Présidente : Aurélie Kas
Examinateurs / Examinatrices : Renaud Lopes, Ninon Burgos
Rapporteurs / Rapporteuses : Christian Barillot, Habib Benali

Résumé

FR  |  
EN

La maladie d’Alzheimer (MA) est la première cause de démence dans le monde, touchant plus de 20 millions de personnes. Son diagnostic précoce est essentiel pour assurer une prise en charge adéquate des patients ainsi que pour développer et tester de nouveaux traitements. La MA est une maladie complexe qui nécessite différentes mesures pour être caractérisée : tests cognitifs et cliniques, neuroimagerie, notamment l’imagerie par résonance magnétique (IRM) et la tomographie par émission de positons (TEP), génotypage, etc. Il y a un intérêt à explorer les capacités discriminatoires et prédictives à un stade précoce de ces différents marqueurs, qui reflètent différents aspects de la maladie et peuvent apporter des informations complémentaires. L’objectif de cette thèse de doctorat était d’évaluer le potentiel et d’intégrer différentes modalités à l’aide de méthodes d’apprentissage statistique, afin de classifier automatiquement les patients atteints de la MA et de prédire l’évolution de la maladie dès ses premiers stades. Plus précisément, nous visions à progresser vers une future application de ces approches à la pratique clinique. La thèse comprend trois études principales. La première porte sur le diagnostic différentiel entre différentes formes de démence à partir des données IRM. Cette étude a été réalisée à l’aide de données de routine clinique, ce qui a permis d’obtenir un scénario d’évaluation plus réaliste. La seconde propose un nouveau cadre pour l’évaluation reproductible des algorithmes de classification de la MA à partir des données IRM et TEP. En effet, bien que de nombreuses approches aient été proposées dans la littérature pour la classification de la MA, elles sont difficiles à comparer et à reproduire. La troisième partie est consacrée à la prédiction de l’évolution de la maladie d’Alzheimer chez les patients atteints de troubles cognitifs légers par l’intégration de données multimodales, notamment l’IRM, la TEP, des évaluations cliniques et cognitives, et le génotypage. En particulier, nous avons systématiquement évalué la valeur ajoutée de la neuroimagerie par rapport aux seules données cliniques/cognitives. Comme la neuroimagerie est plus coûteuse et moins répandue, il est important de justifier son utilisation dans les algorithmes de classification.