Thèse soutenue

Nano-optomécanique intégrée dans les cristaux photoniques

FR  |  
EN
Auteur / Autrice : Rui Zhu
Direction : Isabelle Robert-Philip
Type : Thèse de doctorat
Discipline(s) : Optique et photonique
Date : Soutenance le 16/09/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre de nanosciences et de nanotechnologies (Palaiseau, Essonne ; 2016-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Xavier Checoury
Examinateurs / Examinatrices : Isabelle Robert-Philip, Xavier Checoury, Marc Faucher, Nicolas Le Thomas, Maria-Pilar Bernal-Artajona
Rapporteur / Rapporteuse : Marc Faucher, Nicolas Le Thomas

Résumé

FR  |  
EN

Les oscillateurs de référence de haute pureté sont actuellement utilisés dans un grand nombre d’applications allant du contrôle de fréquence aux horloges pour les radars, les GPS et l’espace... Les tendances actuelles dans ce domaine requièrent des architectures miniaturisées avec la génération de signaux directement dans la gamme de fréquences d’intérêt, autour de quelques GHz. Récemment, de nouvelles architectures basées sur les principes de l’optomécanique ont vu le jour dans ce but. De tels oscillateurs optomécanique génèrent non seulement des signaux hyperfréquences directement dans la gamme de fréquences GHz avec éventuellement un faible bruit de phase, mais permettent également un degré élevé d'intégration sur puce. Ce travail de thèse s'inscrit dans cette démarche. L’oscillateur optomécanique étudié se compose de cavités à cristaux photoniques suspendues couplées à des guides d’ondes silicium sur isolant intégrés dans une architecture tridimensionnelle. Ces cavités abritent des modes optiques fortement confinés autour de 1550nm et des modes mécaniques dans le GHz. De plus, ces structures présentent un recouvrement spatial entre phonon et photon élevé. Il en résulte un couplage optomécanique amélioré. Cette force de couplage optomécanique améliorée est ici sondée optiquement sur des structures à cristaux photoniques de conception optimisée. Ces cavités sont réalisées dans des matériaux semi-conducteurs III-V dont la piézoélectricité nous permet d'intégrer des outils supplémentaires pour sonder et contrôler les vibrations mécaniques via un pilotage capacitif, piézoélectrique ou acoustique. Ce contrôle total des modes mécaniques et de l’interaction optomécanique ouvre la voie à la mise en œuvre de circuits intégrés pour le verrouillage par injection et des boucles de rétroaction permettant de réduire le bruit de phase de l’oscillateur.