Thèse soutenue

Développement de modèles d’ordre réduit basés sur la physique pour les applications d’écoulement réactif
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Gianmarco Aversano
Direction : Olivier GicquelAlessandro Parente
Type : Thèse de doctorat
Discipline(s) : Combustion
Date : Soutenance le 15/11/2019
Etablissement(s) : Université Paris-Saclay (ComUE) en cotutelle avec Université libre de Bruxelles (1970-....)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'énergétique moléculaire et macroscopique, combustion (Gif-sur-Yvette, Essonne)
établissement opérateur d'inscription : CentraleSupélec (2015-....)
Jury : Président / Présidente : Francesco Contino
Examinateurs / Examinatrices : Olivier Gicquel, Alessandro Parente, Francesco Contino, Sean Thomas Smith, Ronan Vicquelin
Rapporteurs / Rapporteuses : Francesco Contino, Sean Thomas Smith

Résumé

FR  |  
EN

L’objectif final étant de développer des modèles d’ordre réduit pour les applications de combustion, des techniques d’apprentissage automatique non supervisées et supervisées ont été testées et combinées dans les travaux de la présente thèse pour l’extraction de caractéristiques et la construction de modèles d’ordre réduit. Ainsi, l’application de techniques pilotées par les données pour la détection des caractéristiques d’ensembles de données de combustion turbulente (simulation numérique directe) a été étudiée sur deux flammes H2 / CO: une évolution spatiale (DNS1) et une jet à évolution temporelle (DNS2). Des méthodes telles que l’analyse en composantes principales (ACP), l’analyse en composantes principales locales (LPCA), la factorisation matricielle non négative (NMF) et les autoencodeurs ont été explorées à cette fin. Il a été démontré que divers facteurs pouvaient affecter les performances de ces méthodes, tels que les critères utilisés pour le centrage et la mise à l’échelle des données d’origine ou le choix du nombre de dimensions dans les approximations de rang inférieur. Un ensemble de lignes directrices a été présenté qui peut aider le processus d’identification de caractéristiques physiques significatives à partir de données de flux réactifs turbulents. Des méthodes de compression de données telles que l’analyse en composantes principales (ACP) et les variations ont été combinées à des méthodes d’interpolation telles que le krigeage, pour la construction de modèles ordonnées à prix réduits et calculables pour la prédiction de l’état d’un système de combustion dans des conditions de fonctionnement inconnues ou des combinaisons de modèles valeurs de paramètre d’entrée. La méthodologie a d’abord été testée pour la prévision des flammes 1D avec un nombre croissant de paramètres d’entrée (rapport d’équivalence, composition du carburant et température d’entrée), avec des variantes de l’approche PCA classique, à savoir PCA contrainte et PCA locale, appliquée aux cas de combustion la première fois en combinaison avec une technique d’interpolation. Les résultats positifs de l’étude ont conduit à l’application de la méthodologie proposée aux flammes 2D avec deux paramètres d’entrée, à savoir la composition du combustible et la vitesse d’entrée, qui ont donné des résultats satisfaisants. Des alternatives aux méthodes non supervisées et supervisées choisies ont également été testées sur les mêmes données 2D. L’utilisation de la factorisation matricielle non négative (FNM) pour l’approximation de bas rang a été étudiée en raison de la capacité de la méthode à représenter des données à valeur positive, ce qui permet de ne pas enfreindre des lois physiques importantes telles que la positivité des fractions de masse d’espèces chimiques et comparée à la PCA. Comme méthodes supervisées alternatives, la combinaison de l’expansion du chaos polynomial (PCE) et du Kriging et l’utilisation de réseaux de neurones artificiels (RNA) ont été testées. Les résultats des travaux susmentionnés ont ouvert la voie au développement d’un jumeau numérique d’un four à combustion à partir d’un ensemble de simulations 3D. La combinaison de PCA et de Kriging a également été utilisée dans le contexte de la quantification de l’incertitude (UQ), en particulier dans le cadre de collaboration de données lié (B2B-DC), qui a conduit à l’introduction de la procédure B2B-DC à commande réduite. Comme pour la première fois, le centre de distribution B2B a été développé en termes de variables latentes et non en termes de variables physiques originales.