Réactions de transfert d'hydrogène catalysées par les complexes de palladium et de platine associés aux ligands phosphinito-acide phosphineux
Auteur / Autrice : | Romain Membrat |
Direction : | Alexandre Martinez, Didier Nuel, Laurent Giordano |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie organique |
Date : | Soutenance le 19/07/2019 |
Etablissement(s) : | Aix-Marseille |
Ecole(s) doctorale(s) : | École doctorale Sciences Chimiques (Marseille ; 1996-....) |
Partenaire(s) de recherche : | Laboratoire : Institut des sciences moléculaires de Marseille (ISM2) |
Jury : | Président / Présidente : Jean-Antoine Rodriguez |
Examinateurs / Examinatrices : Laurence Miesch, Jean-Claude Chambron | |
Rapporteur / Rapporteuse : Angela Marinetti, Bruno Andrioletti |
Mots clés
Mots clés contrôlés
Résumé
La notion de transfert d'hydrogène métallo-catalysé étudiée dans ce manuscrit consiste à générer un hydrure métallique actif à partir d'un donneur d'hydrogène (alcool) et à le transférer vers un produit insaturé dans un objectif d'augmentation de la complexité moléculaire. Une large gamme de produits peut être synthétisée grâce à ce concept et à ses diverses variantes. Le ligand phosphinito-acide phosphineux (PAP) qui est un ligand chargé négativement, permet de former des complexes robustes avec le palladium ou le platine et de générer en présence d'un alcool des hydrures métalliques remarquablement actifs. Dans la première partie de ce travail, un nouveau système d'oxydation d'alcool en milieu anaérobie particulièrement chimiosélectif a été développé. Les études complémentaires mises en œuvre ont permis une bonne compréhension du mécanisme de transfert d'hydrogène. Elles ont également mis en lumière l'intéressante aptitude du ligand PAP à auto-adapter ses propriétés électroniques spécifiquement à chaque étape d'un cycle catalytique. Dans un deuxième temps, une cascade réactionnelle oxydation - double activation de liaison C(sp3)-N débouchant sur la production d'amines primaires libres sans purification a été présentée. Il a été démontré à cette occasion que les complexes M/PAP pouvaient jouer le rôle d'acides de Lewis faible. Enfin, un processus de transfert d'hydrogène énantiosélectif a été étudié à travers l'isomérisation énantiosélective des alcools allyliques