Diagnostic et pronostic des défauts pour la maintenance préventive et prédictive. Application à une colonne de distillation
Auteur / Autrice : | Alaa Daher |
Direction : | Ghaleb Hoblos, Mohamad Khalil |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 19/10/2018 |
Etablissement(s) : | Normandie |
Ecole(s) doctorale(s) : | École doctorale mathématiques, information et ingénierie des systèmes (Caen) |
Partenaire(s) de recherche : | Equipe de recherche : Institut de recherche en systèmes électroniques embarqués (Saint-Étienne-du-Rouvray, Seine-Maritime ; 2001-...) |
Etablissement de préparation de la thèse : Université de Rouen Normandie (1966-....) - Ecole supérieure d'ingénieurs en génie électrique (Rouen) | |
Laboratoire : Institut de recherche en systèmes électroniques embarqués (Saint-Étienne-du-Rouvray, Seine-Maritime ; 2001-...) | |
Jury : | Président / Présidente : Dimitri Lefebvre |
Examinateurs / Examinatrices : Yahya Chetouani, Maya Kallas | |
Rapporteur / Rapporteuse : Maan El Badaoui El Najjar, Abdessamad Kobi |
Mots clés
Résumé
Le procédé de distillation est largement utilisé dans de nombreuses applications telles que la production pétrochimique, le traitement du gaz naturel, les raffineries de pétrole, etc. Généralement, la maintenance des réacteurs chimiques est très coûteuse et perturbe la production pendant de longues périodes. Tous ces facteurs démontrent réellement la nécessité de stratégies efficaces de diagnostic et de pronostic des défauts pour pouvoir réduire et éviter le plus grand nombre de ces problèmes catastrophiques. La première partie de nos travaux vise à proposer une méthode de diagnostic fiable pouvant être utilisée dans le régime permanent d’une procédure non linéaire. De plus, nous proposons une procédure modifiée de la méthode MFCM permettant de calculer la variation en pourcentage entre deux classes. L’utilisation de MFCM a pour objectif de réduire le temps de calcul et d’accroître les performances du classifieur. Les résultats de la méthode proposée confirment la capacité de classifier entre les différentes classes de défaillances considérées. Le calcul de la durée de vie du système est extrêmement important pour éviter les pannes catastrophiques. Notre deuxième objectif est de proposer une méthode fiable de pronostic permettant d’estimer le chemin de dégradation d’une colonne de distillation et de calculer le pourcentage de durée de vie de ce système. Le travail présente une approche basée sur le système d’inférence neuro-fuzzy adaptatif (ANFIS) combiné avec (FCM) pour prédire la trajectoire future et calculer le pourcentage de durée de vie du système. Les résultats obtenus démontrent la validité de la technique proposée pour atteindre les objectifs requis avec une précision de haut niveau. Pour améliorer les performances d’ANFIS, nous proposons la distribution de Parzen comme nouvelle fonction d’appartenance de l’algorithme ANFIS. Les résultats ont démontré l’importance de la technique proposée car elle s’est avérée efficace pour réduire le temps de calcul. En outre, la distribution de Parzen présentait la plus petite erreur quadratique moyenne (RMSE). La dernière partie de cette thèse se concentrait sur la proposition d’un nouvel algorithme pouvant être appliqué pour obtenir un système de surveillance en temps réel s’appuyant sur la prédiction de défauts ; cela signifie que cette méthode permet de prédire l’état futur du système, puis de diagnostiquer quelle est la source d’erreur probable. Elle permet d’évaluer la dégradation d’une colonne de distillation et de diagnostiquer par la suite les défauts ou accidents pouvant survenir à la suite de la dégradation estimée. Cette nouvelle approche combine les avantages d’ANFIS à ceux de RNA permettant d’atteindre un haut niveau de précision.