Reconstruction 3D de scènes d'intérieurs à partir de photographies
Auteur / Autrice : | Yohann Salaün |
Direction : | Renaud Marlet, Pascal Monasse |
Type : | Thèse de doctorat |
Discipline(s) : | Signal, Image, Automatique |
Date : | Soutenance le 06/07/2017 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) |
Jury : | Président / Présidente : Peter Sturm |
Examinateurs / Examinatrices : Renaud Marlet, Pascal Monasse, Luc Robert, Bruno Vallet | |
Rapporteurs / Rapporteuses : Agnès Desolneux |
Mots clés
Mots clés contrôlés
Résumé
Les méthodes actuelles de photogrammétrie permettent de reconstruire en 3D de nombreux objets et/ou scènes à partir de leurs photographies. Pour ce faire, les méthodes classiques détectent des points saillants dans les images et les mettent en correspondance entre plusieurs images. Ces correspondances permettent d'obtenir une information de calibration entre les différentes positions d'où la scène a été photographiée. Une fois ces positions déterminées, il est alors possible d'obtenir une reconstruction dense de la scène en triangulant les parties de la scène vues dans plusieurs images. La détection et la mise en correspondance de points saillants jouent un rôle crucial dans le procédé de reconstruction 3D. C'est pourquoi certaines scènes ou objets sont encore difficiles à reconstruire à partir de méthode de photogrammétrie. C'est notamment le cas des scènes d'intérieur, souvent constituées de larges pans de mur peu texturés où la détection et la mise en correspondance de points sont souvent défaillantes. De plus, la très grande présence de motifs planaires, cas dégénérés des méthodes de calibration usuelles, rend ces scènes très difficiles à calibrer. Dans cette thèse, nous nous intéressons à l'utilisation de segments pour compenser la faible efficacité des points dans le cas des scènes d'intérieur. Dans un premier temps, nous introduisons une méthode de détection de segments plus robuste au manque de contraste des scènes d'intérieur. C'est une méthode multi-échelle qui permet également d'obtenir d'aussi bons résultats quelle que soit la résolution de l'image utilisée. Nous utilisons pour cela des critères inspirés des méthodes emph{a contrario} pour éviter l'utilisation de nombreux paramètres. Nous présentons ensuite une méthode de calibration bifocale utilisant à la fois les segments et les points pour obtenir une méthode robuste au manque de texture et à la planarité de la scène tout en conservant la précision des méthodes de points. Nous introduisons alors une variante du RANSAC emph{a contrario} pour déterminer lorsqu'il vaut mieux utiliser les segments plutôt que les points pour calibrer. Enfin, pour compenser le manque de recouvrement entre photographies dans le cadre des scènes d'intérieur, nous introduisons une méthode de calibration multi-vue utilisant des contraintes de coplanarité entre segments sans avoir besoin de contraintes trifocales. Nous expliquons enfin comment modifier les contraintes trifocales usuelles pour les ajouter aux contraintes de coplanarité et ainsi obtenir une méthode plus robuste mais aussi précise que les méthodes usuelles