Thèse soutenue

Identification de systèmes dynamiques linéaires à effets mixtes : applications aux dynamiques de populations cellulaires

FR  |  
EN
Auteur / Autrice : Levy Batista
Direction : Thierry BastogneEl-Hadi Djermoune
Type : Thèse de doctorat
Discipline(s) : Automatique, Traitement du Signal et des Images, Génie Informatique
Date : Soutenance le 06/12/2017
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Centre de recherche en automatique (Nancy)
Jury : Président / Présidente : Anne Gégout-Petit
Examinateurs / Examinatrices : Michel de Mathelin, Guillaume Mercère, Benjamin Ribba
Rapporteur / Rapporteuse : Michel de Mathelin, Guillaume Mercère

Résumé

FR  |  
EN

L’identification de systèmes dynamiques est une approche de modélisation fondée uniquement sur la connaissance des signaux d’entrée et de sortie de plus en plus utilisée en biologie. Dans ce même domaine d’application, des plans d’expériences sont souvent appliqués pour tester les effets de facteurs qualitatifs sur la réponse et chaque expérience est répétée plusieurs fois pour estimer la reproductibilité des résultats. Dans un objectif d’inférence, il est important de prendre en compte dans la procédure de modélisation les variabilités expliquées (effets fixes) et inexpliquées (effets aléatoires) entre les réponses individuelles. Une solution consiste à utiliser des modèles à effets mixtes mais jusqu’à présent il n’existe aucune approche similaire dans la communauté automaticienne de l’identification de systèmes. L’objectif de la thèse est de combler ce manque grâce à l’utilisation de structures de modèle hiérarchiques introduisant des effets mixtes au sein des représentations polynomiales boites noires de systèmes dynamiques linéaires. Une nouvelle méthode d’estimation des paramètres adaptée aussi bien à des structures simples comme ARX qu’à des structures plus complètes comme celle de Box-Jenkins est développée. Une solution au calcul de la matrice d’information de Fisher est également proposée. Finalement, une application à trois cas d’étude en biologie a permis de valider l’interêt pratique de l’approche d’identification de populations de systèmes dynamiques