Personnalisation robuste de modèles 3D électromécaniques du cœur. Application à des bases de données cliniques hétérogènes et longitudinales
Auteur / Autrice : | Roch Molléro |
Direction : | Nicholas Ayache, Xavier Pennec, Maxime Sermesant |
Type : | Thèse de doctorat |
Discipline(s) : | Automatique, traitement du signal et des images |
Date : | Soutenance le 19/12/2017 |
Etablissement(s) : | Université Côte d'Azur (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Nice ; 1992-....) |
Partenaire(s) de recherche : | établissement de préparation : Université de Nice (1965-2019) |
Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) - Analysis and Simulation of Biomedical Images | |
Jury : | Président / Présidente : Bart Bijnens |
Examinateurs / Examinatrices : Maxime Sermesant, Bart Bijnens, Irène Vignon-Clémentel, Hervé Delingette, Tommaso Mansi, Philippe Moireau | |
Rapporteurs / Rapporteuses : Martyn Nash, Irène Vignon-Clémentel |
Mots clés
Résumé
La modélisation cardiaque personnalisée consiste à créer des simulations 3D virtuelles de cas cliniques réels pour aider les cliniciens à prédire le comportement du cœur ou à mieux comprendre certaines pathologies. Dans cette thèse nous illustrons d'abord la nécessité d'une approche robuste d'estimation des paramètres, dans un cas ou l'incertitude dans l'orientation des fibres myocardiques entraîne une incertitude dans les paramètres estimés qui est très large par rapport à leur variabilité physiologique. Nous présentons ensuite une approche originale multi-échelle 0D/3D pour réduire le temps de calcul, basée sur un couplage multi-échelle entre les simulations du modèle 3D et d'une version "0D" réduite de ce modèle. Ensuite, nous dérivons un algorithme rapide de personnalisation multi-échelle pour le modèle 3D. Dans un deuxième temps, nous construisons plus de 140 simulations 3D personnalisées, dans le cadre de deux études impliquant l'analyse longitudinale de la fonction cardiaque : d'une part, l'analyse de l'évolution de cardiomyopathies à long terme, d'autre part la modélisation des changements cardiovasculaires pendant la digestion. Enfin, nous présentons un algorithme pour sélectionner automatiquement des directions observables dans l'espace des paramètres à partir d'un ensemble de mesures, et calculer des probabilités "a priori" cohérentes dans ces directions à partir des valeurs de paramètres dans la population. Cela permet en particulier de contraindre l'estimation de paramètres dans les cas où des mesures sont manquantes. Au final nous présentons des estimations cohérentes de paramètres dans une base de données de 811 cas avec le modèle 0D et 137 cas du modèle 3D.