Détection et estimation 3D de la pose des personnes dans la salle opératoire à partir d'images RGB-D
Auteur / Autrice : | Abdolrahim Kadkhodamohammadi |
Direction : | Michel de Mathelin |
Type : | Thèse de doctorat |
Discipline(s) : | Image et vision |
Date : | Soutenance le 01/12/2016 |
Etablissement(s) : | Strasbourg |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences de l'information et de l'ingénieur (Strasbourg ; 1997-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (Strasbourg ; 2013-....) |
Jury : | Président / Présidente : Nicholas Ayache |
Examinateurs / Examinatrices : Nicolas Padoy | |
Rapporteur / Rapporteuse : Danail Stoyanov, Slobodan Ilic |
Résumé
Dans cette thèse, nous traitons des problèmes de la détection des personnes et de l'estimation de leurs poses dans la Salle Opératoire (SO), deux éléments clés pour le développement d'applications d'assistance chirurgicale. Nous percevons la salle grâce à des caméras RGB-D qui fournissent des informations visuelles complémentaires sur la scène. Ces informations permettent de développer des méthodes mieux adaptées aux difficultés propres aux SO, comme l'encombrement, les surfaces sans texture et les occlusions. Nous présentons des nouvelles approches qui tirent profit des informations temporelles, de profondeur et des vues multiples afin de construire des modèles robustes pour la détection des personnes et de leurs poses. Une évaluation est effectuée sur plusieurs jeux de données complexes enregistrés dans des salles opératoires avec une ou plusieurs caméras. Les résultats obtenus sont très prometteurs et montrent que nos approches surpassent les méthodes de l'état de l'art sur ces données cliniques.