Estimation de l'héritabilité dans les modèles mixtes en grande dimension : théorie et applications.
Auteur / Autrice : | Anna Bonnet |
Direction : | Elisabeth Gassiat, Céline Lévy-Leduc |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance le 05/12/2016 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Université Paris-Sud (1970-2019) |
: AgroParisTech (France ; 2007-....) | |
Laboratoire : Laboratoire Mathématiques et Informatique Appliquées (Paris) | |
Jury : | Président / Présidente : Christophe Giraud |
Examinateurs / Examinatrices : Elisabeth Gassiat, Céline Lévy-Leduc, Christophe Giraud, Lee Dicker, Thomas Bourgeron, Nicolas Verzelen, Christophe Ambroise | |
Rapporteur / Rapporteuse : Lee Dicker |
Mots clés
Résumé
Nous nous intéressons à desméthodes statistiques pour estimer l'héritabilitéd'un caractère biologique, qui correspond à lapart des variations de ce caractère qui peut êtreattribuée à des facteurs génétiques. Nousproposons dans un premier temps d'étudierl'héritabilité de traits biologiques continus àl'aide de modèles linéaires mixtes parcimonieuxen grande dimension. Nous avons recherché lespropriétés théoriques de l'estimateur du maximumde vraisemblance de l'héritabilité : nousavons montré que cet estimateur était consistantet vérifiait un théorème central limite avec unevariance asymptotique que nous avons calculéeexplicitement. Ce résultat, appuyé par des simulationsnumériques sur des échantillons finis,nous a permis de constater que la variance denotre estimateur était très fortement influencéepar le ratio entre le nombre d'observations et lataille des effets génétiques. Plus précisément,quand le nombre d’observations est faiblecomparé à la taille des effets génétiques (ce quiest très souvent le cas dans les étudesgénétiques), la variance de l’estimateur était trèsgrande. Ce constat a motivé le développementd'une méthode de sélection de variables afin dene garder que les variants génétiques les plusimpliqués dans les variations phénotypiques etd’améliorer la précision des estimations del’héritabilité.La dernière partie de cette thèse est consacrée àl'estimation d'héritabilité de données binaires,dans le but d'étudier la part de facteursgénétiques impliqués dans des maladies complexes.Nous proposons d'étudier les propriétésthéoriques de la méthode développée par Golanet al. (2014) pour des données de cas-contrôleset très efficace en pratique. Nous montronsnotamment la consistance de l’estimateur del’héritabilité proposé par Golan et al. (2014).