Post-traitements statistiques de prévisions de vent déterministes et d'ensemble sur une grille
Auteur / Autrice : | Michaël Zamo |
Direction : | Liliane Bel |
Type : | Thèse de doctorat |
Discipline(s) : | Statistiques appliquées |
Date : | Soutenance le 15/12/2016 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Agriculture, alimentation, biologie, environnement, santé (Paris ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Université Paris-Saclay (2015-2019) |
Laboratoire : Laboratoire Mathématiques et Informatique Appliquées (Paris) | |
Jury : | Président / Présidente : Philippe Besse |
Examinateurs / Examinatrices : Philippe Besse, Tilmann Gneiting, Vivien Mallet, Philippe Arbogast, Mathieu Vrac, Olivier Mestre | |
Rapporteurs / Rapporteuses : Tilmann Gneiting, Liliane Bel |
Mots clés
Mots clés contrôlés
Résumé
Les erreurs des modèles de prévision numérique du temps (PNT) peuvent être réduites par des méthodes de post-traitement (dites d'adaptation statistique ou AS) construisant une relation statistique entre les observations et les prévisions. L'objectif de cette thèse est de construire des AS de prévisions de vent pour la France sur la grille de plusieurs modèles de PNT, pour les applications opérationnelles de Météo-France en traitant deux problèmes principaux. Construire des AS sur la grille de modèles de PNT, soit plusieurs milliers de points de grille sur la France, demande de développer des méthodes rapides pour un traitement en conditions opérationnelles. Deuxièmement, les modifications fréquentes des modèles de PNT nécessitent de mettre à jour les AS, mais l'apprentissage des AS requiert un modèle de PNT inchangé sur plusieurs années, ce qui n'est pas possible dans la majorité des cas.Une nouvelle analyse du vent moyen à 10 m a été construite sur la grille du modèle local de haute résolution (2,5 km) de Météo-France, AROME. Cette analyse se compose de deux termes: une spline fonction de la prévision la plus récente d'AROME plus une correction par une spline fonction des coordonnées du point considéré. La nouvelle analyse obtient de meilleurs scores que l'analyse existante, et présente des structures spatio-temporelles réalistes. Cette nouvelle analyse, disponible au pas horaire sur 4 ans, sert ensuite d'observation en points de grille pour construire des AS.Des AS de vent sur la France ont été construites pour ARPEGE, le modèle global de Météo-France. Un banc d'essai comparatif désigne les forêts aléatoires comme meilleure méthode. Cette AS requiert un long temps de chargement en mémoire de l'information nécessaire pour effectuer une prévision. Ce temps de chargement est divisé par 10 en entraînant les AS sur des points de grille contigü et en les élaguant au maximum. Cette optimisation ne déteriore pas les performances de prévision. Cette approche d'AS par blocs est en cours de mise en opérationnel.Une étude préalable de l'estimation du « continuous ranked probability score » (CRPS) conduit à des recommandations pour son estimation et généralise des résultats théoriques existants. Ensuite, 6 AS de 4 modèles d'ensemble de PNT de la base TIGGE sont combinées avec les modèles bruts selon plusieurs méthodes statistiques. La meilleure combinaison s'appuie sur la théorie de la prévision avec avis d'experts, qui assure de bonnes performances par rapport à une prévision de référence. Elle ajuste rapidement les poids de la combinaison, un avantage lors du changement de performance des prévisions combinées. Cette étude a soulevé des contradictions entre deux critères de choix de la meilleure méthode de combinaison : la minimisation du CRPS et la platitude des histogrammes de rang selon les tests de Jolliffe-Primo. Il est proposé de choisir un modèle en imposant d'abord la platitude des histogrammes des rangs.