Estimation d'état et de paramètres pour les systèmes quantiques ouverts
Auteur / Autrice : | Pierre Six |
Direction : | Pierre Rouchon |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématique et automatique |
Date : | Soutenance le 22/11/2016 |
Etablissement(s) : | Paris Sciences et Lettres (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences des métiers de l'ingénieur (Paris) |
Partenaire(s) de recherche : | Laboratoire : Centre automatique et systèmes (Fontainebleau, Seine et Marne) |
Jury : | Président / Présidente : Benjamin Huard |
Examinateurs / Examinatrices : Pierre Rouchon, Mădălin Gută, Igor Dotsenko | |
Rapporteur / Rapporteuse : Éric Moulines, Yacine Chitour |
Résumé
La communauté scientifique a réussi ces dernières années à bâtir des systèmes quantiques simples sur lesquels des séries de mesures sont acquises successivement le long de trajectoires quantiques et sans réinitialisation de l’état (opérateur densité) par l’expérimentateur.L’objet de cette thèse est d’adapter les méthodes de tomographie quantique (estimation d’état et de paramètres) à ce cadre pour prendre en compte la rétroaction de la mesure sur l’état, la décohérence et les imperfections expérimentales.Durant le processus de mesure, l’évolution de l’état quantique est alors gouvernée par un processus de Markov à états cachés (filtres quantiques de Belavkin). Pour des mesuresen temps continu, nous commençons par montrer comment discrétiser l’équation maîtresse stochastique tout en préservant la positivité et la trace de l’état quantique, et ainsi sera mener aux filtres quantiques en temps discret. Ensuite, nous développons, à partir de trajectoires de mesures en temps discret, des techniques d’estimation par maximum de vraisemblance pour l’état initial et les paramètres. Cette estimation est accompagnée de son intervalle de confiance. Lorsqu’elle concerne des valeurs de paramètres (tomographie de processus quantique), nous donnons un résultat de robustesse grâce au formalisme des filtres particulaires et nous proposons une méthode de maximisation fondée sur le calcul du gradient par l’adjoint et bien adaptée au cas multiparamétrique. Lorsque l’estimation porte sur l’état initial (tomographie d’état quantique), nous donnons une formulation explicite de la fonction de vraisemblance grâce aux états adjoints, montrons que son logarithme est une fonction concave de l’état initial et élaborons une expression intrinsèque de la variance grâce à des développements asymptotiques de moyennes bayésiennes et reposant sur la géométrie de l’espace des opérateurs densité.Ces méthodes d’estimation ont été appliquées et validées expérimentalement pour deux types de mesures quantiques : des mesures en temps discret non destructives de photons dans le groupe d’électrodynamique quantique en cavité du LKB au Collège de France, des mesures diffusives de la fluorescence d’un qubit supraconducteur dans le groupe d’électronique quantique du LPA à l’ENS Paris.