Modélisation et commande d'un exosquelette pour les membres inférieurs : approche basée sur les oscillateurs non-linéaires et des techniques de commande non-linéaires
Auteur / Autrice : | Michael Oluwatosin Ajayi |
Direction : | Karim Djouani |
Type : | Thèse de doctorat |
Discipline(s) : | Signal, Image, Automatique |
Date : | Soutenance le 15/11/2016 |
Etablissement(s) : | Paris Est en cotutelle avec Tshwane University of Technology |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Images, Signaux et Systèmes Intelligents (Créteil) |
Jury : | Président / Présidente : François Rocaries |
Examinateurs / Examinatrices : Karim Djouani, Yskandar Hamam, Barend Van Wyk, Yacine Amirat, Anish Mathew Kurien | |
Rapporteur / Rapporteuse : Abdelaziz Benallegue, Antoine Ferreira |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Les exosquelettes représentent des systèmes mécaniques portables qui ont reçu une grande attention de la part de la communauté scientifique ces derrières années, vues les possibilités qu'ils offrent.Ces possibilités concernent principalement les fonctions d'assistance et de réhabilitation des personnes en situation de handicape et personnes âgées, dans un objectif de leur permettre de recouvrir leur facultés motrices. Cependant, d'autres possibilités sont concernées comme permettre à des personnes paraplégiques de remarcher ou de permettre des opérations de manipulation excédent les capacités humaines.Pour permettre la réalisation des fonctions offertes par les robots portables, une connaissance fine de la dynamique du système est requise en relation avec les tâches à réaliser par les sujets. Par ailleurs, des approches de commande sûres qui prennent en compte la sécurité des usagers est nécessaire. Dans cet objectif, des techniques de commande bio-inspirées avec des techniques de commande par découplage non-linéaire sont considérées. Les dernières assurent que la loi de commande est stable et bornée en prenant en considération le domaine de saturation des actionneurs alors que les premières ont inspiré la conception de contrôleurs basés sur les oscillateurs locaux non-linéaires (Central Pattern Generators : CPG).Les CPGs sont modélisés par des réseaux de neurones qui peuvent être représentés par un ensemble d'oscillateurs non-linéaires situés dans la moelle épinière, avec des capacités de génération de signaux rythmiques multidimensionnels synchrones pour remplir des fonctions motrices sous le contrôle de simples signaux de commande. Ces signaux sont supposés être de nature périodique ou semi-périodique, dont la génération pour étudier les systèmes de locmotion humain reste un problème de recherche d'actualité.Dans la présente thèse, l'analyse, la simulation et la commandes des articulations d'un robot portable utilisé pour les membres inférieurs en utilisant, d'un côté les oscillateurs locaux non-linéaires et d'un autre côté des techniques de commande par découplage non-linéaire sont proposés, avec comme objectif final de permtre la mise en œuvre des approches proposées sur la plate-forme expérimentale développée au sein du FSATI (French South African Institute fo Technology).Pour atteindre l'objectif qui a été fixé par les travaux de recherche engagés, une étude de l'état de l'art sur les aspects liés à la connaissance de l'anatomie, la physiologie et l'analyse biomécanique de la marche humaine a été effectuée. Par ailleurs, une étude détaillée des oscillateurs locaux non-linéaires en parallèle avec les approches de commande directe et inverse, ont permis la proposition de stratégies de commande qui couplent les oscillateurs non-linéaires d'un côté et des techniques de découplage non-linéaire d'un autre côté ont été proposées et validées sur des systèmes de plusieurs degrés de liberté. Des simulations intensives ont été conduites afin de vérifier la capacité d'adaptation temps des approches de commandes mises en œuvre avec l'humain ans la boucle.Les contributions de la présente étude concerne deux approches de commande. La première approche concerne l'intégration d'une approche bio-inspirée, basée sur les oscillateurs locaux non-linéaires et la deuxième approche est basée sur les techniques de commande bornée par découplage non-linéaire