Thèse soutenue

Intégration de microcanaux pour l'évacuation forcée de la chaleur au sein de puces 2D et 3D

FR  |  
EN
Auteur / Autrice : Louis-Michel Collin
Direction : Luc G. FréchetteAbdelkader Souifi
Type : Thèse de doctorat
Discipline(s) : Electronique, micro et nano-électronique, optique et laser
Date : Soutenance le 08/07/2016
Etablissement(s) : Lyon en cotutelle avec Université de Sherbrooke (Québec, Canada)
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : Institut des Nanotechnologies de Lyon (Ecully, Rhône) - Institut des Nanotechnologies de Lyon / INL
Jury : Président / Présidente : Richard Arès
Examinateurs / Examinatrices : Luc G. Fréchette, Abdelkader Souifi, Richard Arès, Laurent Béchou, Gabriela Nicolescu
Rapporteur / Rapporteuse : Laurent Béchou, Gabriela Nicolescu

Résumé

FR  |  
EN

En microélectronique, plusieurs tendances telles que l'empilement 3D et l'amincissement de puces amènent des défis thermiques grandissants. Ces défis sont exacerbés lorsqu'appliqués aux appareils mobiles où l'espace et la puissance disponibles pour le refroidissement sont limités. Le but de cette thèse est de développer des outils de conception et méthodes d'implémentation de microcanaux pour le refroidissement microfluidique de puces 2D et 3D avec points chauds destinés aux appareils mobiles.Une méthode de conception pour optimiser la configuration des microcanaux refroidissant une puce est développée utilisant un plan d'expériences numériques. La configuration optimisée propose le refroidissement à une température maximale de 89 °C d'un point chaud de 2 W par un écoulement où la perte de charge est plus petit que 1 kPa. Des prototypes avec différents empilements et distributions de microcanaux sont fabriqués par gravure profonde et apposés par pick-and-place. Un banc de caractérisation et une puce thermique test sont fabriqués pour caractériser expérimentalement les prototypes de refroidissement avec différentes configurations. Un prototype avec microcanaux limités aux alentours des points chauds et reportés sur la face arrière de la puce test atteint une résistance thermique de 2.8 °C/W. Cela est réalisé avec un débit de 9.4 ml/min et des pertes de charges de 19.2 kPa, soit une puissance hydraulique de 3 mW. Ce refroidissement extrait 7.3 W générés sur un seul serpentin à un flux thermique de 1 185 W/cm² pour un coefficient de performance de 2 430. Les résultats de l'optimisation suggèrent que la dissipation thermique soit exploitée en ajoutant des microcanaux en parallèle, plutôt qu'en allongeant les microcanaux. On observe expérimentalement comme numériquement que la résistance liée à la hausse de température du fluide domine la résistance totale. Enfin, il apparaît que les différents empilements ont un effet plus important sur la résistance thermique que les distributions de microcanaux dans les plages observées.