Thèse soutenue

Sur la dynamique de quelques fluides complexes

FR  |  
EN
Auteur / Autrice : Francesco De Anna
Direction : Marius-Gheorghe Paicu
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées et calcul scientifique
Date : Soutenance le 30/05/2016
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Bordeaux
Jury : Président / Présidente : Didier Bresch
Examinateurs / Examinatrices : Franck Sueur, Arghir Zarnescu
Rapporteurs / Rapporteuses : Raphaël Danchin, Matthias Hieber

Résumé

FR  |  
EN

Dans le cadre de cette thèse, on s'intéresse à la dynamique de quelques fluides complexes. D'une part on étudie la dynamique des cristaux liquides nématiques, en utilisant les modèles proposés par Ericksen et Leslie, Beris et Edwards, Qian et Sheng. D'autre part, on analyse un fluide complexe dont la dynamique dépend de la température et qui est modélisée par le système de Boussinesq. Les cristaux liquides sont des matériaux avec une phase de la matière intermédiaire entre les liquides et les solides qui sont des phases plus connues. Dans cette thèse, on s'intéresse à l'étude du problème de Cauchy associé à chaque système modélisant leurs hydrodynamiques. Tout d'abord on obtient des résultats d'existence et d'unicité de solutions faibles ou classiques, solutions qui sont globales en temps. Ensuite, on analyse la propagation de la régularité des données initiales pour ces solutions. Le cadre fonctionnel adopté pour les données initiales est celui des espaces de Besov homogènes, généralisant des classes d'espaces mieux connues : les espaces de Soboloev homogènes et les espaces de Hölder. Le système Ericksen-Leslie est considéré dans la version simplifiée proposée par F. Lin et C. Liu, version qui préserve les principales difficultés du système initial. On étudie ce problème en dimension supérieure ou égale à deux. On considère le système dans le cas inhomogène, c'est-à dire avec une densité variable. De plus, on s'intéresse au cas d'une densité de faible régularité qui est autorisée à présenter des discontinuités. Donc, le résultat que l'on démontre peut être mis en relation avec la dynamique des mélanges de nématiques non miscibles. On démontre l'existence globale en temps de solutions faibles de régularité invariante par changement d'échelle, en supposant une condition de petitesse sur les données initiales dans des espaces de Besov critiques. On démontre aussi l'unicité de ces solutions si de plus on suppose une condition supplémentaire de régularité pour les données initiales. Le système Beris-Edwards est analysé dans le cas bidimensionnel. On obtient l'existence et l'unicité de solutions faibles globales en temps, lorsque les données initiales sont dans des espaces de Sobolev spécifiques (sans condition de petitesse). Le niveau de régularité de ces espaces fonctionnels est adapté pour bien définir les solutions faibles. L'unicité est une question délicate et demande une estimation doublement logarithmique pour une norme sur la différence entre deux solutions dans un espace de Banach convenable. Le lemme d'Osgood permet alors de conclure à l'unicité de la solution. On obtient également un résultat de propagation de régularité d'indice positif. Afin de prendre en compte l'inertie des molécules, on considère aussi le modèle proposé par Qian et Sheng, et on étudie le cas de la dimension supérieure ou égale à deux. Ce système montre une caractéristique structurale spécifique, plus précisément la présence d'un terme inertiel, ce qui génère des difficultés significatives. On démontre l'existence d'une fonctionnelle de Lyapunov et l'existence et l'unicité de solutions classiques globales en temps, en considérant des données initiales petites. Enfin, on analyse le système de Boussinesq et on montre l'existence et l'unicité de solutions globales en temps. On considère la viscosité en fonction de la température en supposant simplement que la température initiale soit bornée, tandis que la vitesse initiale est dans des espaces de Besov avec indice de régularité critique. Les données initiales ont une composante verticale grande et satisfont à une condition de petitesse spécifique sur les composantes horizontales: elles doivent être exponentiellement petites par rapport à la composante verticale.