Thèse soutenue

Modélisation des transferts de masse et de chaleur au voisinage de parois réactives : applications à l’oxydation de composés carbonés pour le post-traitement

FR  |  
EN
Auteur / Autrice : Adam Chabane
Direction : Christian AngelbergerFranck Nicoud
Type : Thèse de doctorat
Discipline(s) : Énergétique
Date : Soutenance le 08/12/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : CentraleSupélec (2015-....)
Laboratoire : Laboratoire d'énergétique moléculaire et macroscopique, combustion (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Olivier Simonin
Examinateurs / Examinatrices : Christian Angelberger, Franck Nicoud, Carmen Jimenez, Karine Truffin, Laurent Catoire, Gladys Moréac-Njeim
Rapporteurs / Rapporteuses : Carmen Jimenez, Éric Schaer

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La crise environnementale a conduit l’industrie automobile à faire face à des contraintes croissantes tandis que les limitations drastiques de polluants entrent en vigueur. Afin de réduire les émissions polluantes issues de la combustion, l’une des solutions adoptées est de post-traiter les fumées à l’aide de systèmes de post-traitement catalytique à l’image du catalyseur 3 voies (TWC) pour les moteurs à essence ou le catalyseur d’oxydation (DOC)pour les moteurs diesel. Ces appareils présentent une structure en nid d’abeille constituée d’un réseau de canaux à l’échelle millimétrique appelés monolithes et dont les parois intérieures sont recouvertes d’une fine couche de métal précieux aux propriétés catalytiques. Les polluants sont transformés via l’interaction entre les molécules présentes dans la phase gaz et les sites actifs du métal précieux. Etant donné les conditions laminaires d’écoulement au sein des monolithes, un mélange faible et une diffusion moléculaire limitée peuvent être rencontrés au voisinage de la paroi réactive. Le taux de conversion des polluants peut être alors insuffisant pour des conditions opératoires données. Dans le but d’optimiser les transferts,des obstacles peuvent être introduits par déformation mécanique des parois du canal catalytique au cours du processus de fabrication.Les simulations numériques peuvent contribuer à l’émergence de solutions innovantes basées sur une compréhension et une maitrise profonde des phénomènes sous-jacents. Afin d’atteindre cet objectif, le premier élément clé a été de formuler et d’intégrer dans le code de dynamique des fluides AVBP une approche numérique combinant d’une part des conditions aux limites dédiées à la prise en compte de parois réactives,et d’autre part, la résolution de la cinétique chimique gaz et surface via un solveur d’EDP.L’approche a permis la prise en compte de la cinétique détaillée et l’interaction entre la phase gaz et les parois réactives. L’outil développé a été validé en premier lieu à l’aide de calculs de réacteurs hétérogènes zéro-dimensionnels. Les résultats ont montré un parfait accord avec le solveur de référence SENKIN. L’approche a été validée ensuite en l’appliquant à la simulation de deux canaux réactifs aux parois planes et en comparant les résultats numériques aux résultats expérimentaux de Dogwiler et al. L’approche développée s’est révélée être capable de reproduire les principales caractéristiques de la combustion catalytique pour différents points de fonctionnement. Enfin, l’outil développé a été appliqué à l’étude de l’impact de l’introduction d’obstacles pariétaux sur les taux de conversion des systèmes catalytiques. Les résultats ont permis d’ouvrir des perspectives très intéressantes quant à la contribution de la CFD2D et de la chimie hétérogène détaillée à l’optimisation du design des systèmes de post traitement catalytique. En particulier, l’étude de l’influence des obstacles pariétaux a montré que le design de la géométrie des monolithes constitue un fort potentiel d’optimisation de l’efficacité des systèmes de conversion catalytique et ce, à moindre coût grâce à une utilisation optimisée du métal précieux rendue possible par une meilleure interaction entre l'écoulement, les réactions chimiques dans la phase gaz et la paroi réactive.