Navigation autonome et télé-opération de véhicules aériens en utilisant la vision monoculaire
Auteur / Autrice : | Diego Alberto Mercado-Ravell |
Direction : | Rogelio Lozano-Leal, Pedro Castillo-García, Rafael Castro |
Type : | Thèse de doctorat |
Discipline(s) : | Technologies de l’Information et des Systèmes |
Date : | Soutenance le 04/12/2015 |
Etablissement(s) : | Compiègne |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur (Compiègne) |
Partenaire(s) de recherche : | Laboratoire : Heuristique et Diagnostic des Systèmes Complexes [Compiègne] / Heudiasyc |
Mots clés
Mots clés contrôlés
Résumé
Ce travail porte, de façon théorétique et pratique, sur les sujets plus pertinents autour des drones en navigation autonome et semi-autonome. Conformément à la nature multidisciplinaire des problèmes étudies, une grande diversité des techniques et théories ont été couverts dans les domaines de la robotique, l’automatique, l’informatique, la vision par ordinateur et les systèmes embarques, parmi outres.Dans le cadre de cette thèse, deux plates-formes expérimentales ont été développées afin de valider la théorie proposée pour la navigation autonome d’un drone. Le premier prototype, développé au laboratoire, est un quadrirotor spécialement conçu pour les applications extérieures. La deuxième plate-forme est composée d’un quadrirotor à bas coût du type AR.Drone fabrique par Parrot. Le véhicule est connecté sans fil à une station au sol équipé d’un système d’exploitation pour robots (ROS) et dédié à tester, d’une façon facile, rapide et sécurisé, les algorithmes de vision et les stratégies de commande proposés. Les premiers travaux développés ont été basés sur la fusion de donnés pour estimer la position du drone en utilisant des capteurs inertiels et le GPS. Deux stratégies ont été étudiées et appliquées, le Filtre de Kalman Etendu (EKF) et le filtre à Particules (PF). Les deux approches prennent en compte les mesures bruitées de la position de l’UAV, de sa vitesse et de son orientation. On a réalisé une validation numérique pour tester la performance des algorithmes. Une tâche dans le cahier de cette thèse a été de concevoir d’algorithmes de commande pour le suivi de trajectoires ou bien pour la télé-opération. Pour ce faire, on a proposé une loi de commande basée sur l’approche de Mode Glissants à deuxième ordre. Cette technique de commande permet de suivre au quadrirotor de trajectoires désirées et de réaliser l’évitement des collisions frontales si nécessaire. Etant donné que la plate-forme A.R.Drone est équipée d’un auto-pilote d’attitude, nous avons utilisé les angles désirés de roulis et de tangage comme entrées de commande. L’algorithme de commande proposé donne de la robustesse au système en boucle fermée. De plus, une nouvelle technique de vision monoculaire par ordinateur a été utilisée pour la localisation d’un drone. Les informations visuelles sont fusionnées avec les mesures inertielles du drone pour avoir une bonne estimation de sa position. Cette technique utilise l’algorithme PTAM (localisation parallèle et mapping), qui s’agit d’obtenir un nuage de points caractéristiques dans l’image par rapport à une scène qui servira comme repère. Cet algorithme n’utilise pas de cibles, de marqueurs ou de scènes bien définies. La contribution dans cette méthodologie a été de pouvoir utiliser le nuage de points disperse pour détecter possibles obstacles en face du véhicule. Avec cette information nous avons proposé un algorithme de commande pour réaliser l’évitement d’obstacles. Cette loi de commande utilise les champs de potentiel pour calculer une force de répulsion qui sera appliquée au drone. Des expériences en temps réel ont montré la bonne performance du système proposé. Les résultats antérieurs ont motivé la conception et développement d’un drone capable de réaliser en sécurité l’interaction avec les hommes et les suivre de façon autonome. Un classificateur en cascade du type Haar a été utilisé pour détecter le visage d’une personne. Une fois le visage est détecté, on utilise un filtre de Kalman (KF) pour améliorer la détection et un algorithme pour estimer la position relative du visage. Pour réguler la position du drone et la maintenir à une distance désirée du visage, on a utilisé une loi de commande linéaire.