Thèse soutenue

Conception et synthèse de sondes moléculaires pour l'étude d'interactions polyphénol-protéine
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Dong tien Tran
Direction : Stéphane QuideauDenis Deffieux
Type : Thèse de doctorat
Discipline(s) : Chimie organique
Date : Soutenance le 18/12/2015
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences chimiques (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut des Sciences Moléculaires (Bordeaux)
Jury : Président / Présidente : Jean-Marie Schmitter
Examinateurs / Examinatrices : Christian Lherbet
Rapporteurs / Rapporteuses : Véronique Cheynier, Stefan Chassaing

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les polyphénols sont des métabolites secondaires d’origine végétale. Ces substances naturelles connues pour leurs pouvoirs antioxydants et anti-radicalaires, contribuent à la protection de la santé humaine notamment contre les maladies cardiovasculaires et neurodégénératives, mais également contre certains cancers et diabètes. Dans certains cas, ces effets biologiques bénéfiques pour la santé pourraient également être liés à une interaction spécifique polyphénol-protéine peu étudiée à ce jour par manque d’outils moléculaires adaptés. Les travaux effectués au cours de cette thèse ont consisté à concevoir, à synthétiser et à évaluer des sondes moléculaires polyvalentes porteuses de polyphénols comme substrats d’affinité pour l’analyse des interactions polyphénol-protéine. Dans ce contexte, de nombreuses sondes arborant différents types de polyphénols ont été synthétisées. Ces différentes sondes pourront être utilisées en protéomique chimique du type "Affinity-Based Protein Profiling" (ABPP) pour identifier au sein d’un mélange complexe de protéines, une protéine ayant une affinité spécifique pour un polyphénol donné. Ces mêmes sondes permettront également d’étudier de manière qualitative les interactions d’un polyphénol avec une protéine donnée en temps réel par la technique de résonance plasmonique de surface (SPR).