Optimisation et gestion de l'incertitude du trafic aérien
Auteur / Autrice : | Gaetan Marceau Caron |
Direction : | Marc Schoenauer, Pierre Savéant |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 22/09/2014 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | Ecole doctorale Informatique de Paris-Sud |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020) - Laboratoire de Recherche en Informatique |
Entreprise : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Saclay, Ile-de-France) | |
Jury : | Président / Présidente : Nicolas Durand |
Examinateurs / Examinatrices : Marc Schoenauer, Pierre Savéant, Nicolas Durand, Eric Feron, Jean-Marc Alliot, Xavier Gandibleux, François Yvon, Pierre Bessière | |
Rapporteur / Rapporteuse : Eric Feron, Jean-Marc Alliot |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse traite de la gestion du trafic aérien et plus précisément, de l’optimisation globale des plans de vol déposés par les compagnies aériennes sous contrainte du respect de la capacité de l’espace aérien. Une composante importante de ce travail concerne la gestion de l’incertitude entourant les trajectoires des aéronefs. Dans la première partie du travail, nous identifions les principales causes d’incertitude au niveau de la prédiction de trajectoires. Celle-ci est la composante essentielle à l’automatisation des systèmes de gestion du trafic aérien. Nous étudions donc le problème du réglage automatique et en-ligne des paramètres de la prédiction de trajectoires au cours de la phase de montée avec l’algorithme d’optimisation CMA-ES. La principale conclusion, corroborée par d’autres travaux de la littérature, implique que la prédiction de trajectoires des centres de contrôle n’est pas suffisamment précise aujourd’hui pour supporter l’automatisation complète des tâches critiques. Ainsi, un système d’optimisation centralisé de la gestion du traficaérien doit prendre en compte le facteur humain et l’incertitude de façon générale.Par conséquent, la seconde partie traite du développement des modèles et des algorithmes dans une perspective globale. De plus, nous décrivons un modèle stochastique qui capture les incertitudes sur les temps de passage sur des balises de survol pour chaque trajectoire. Ceci nous permet d’inférer l’incertitude engendrée sur l’occupation des secteurs de contrôle par les aéronefs à tout moment.Dans la troisième partie, nous formulons une variante du problème classique du Air Traffic Flow and Capacity Management au cours de la phase tactique. L’intérêt est de renforcer les échanges d’information entre le gestionnaire du réseau et les contrôleurs aériens. Nous définissons donc un problème d’optimisation dont l’objectif est de minimiser conjointement les coûts de retard et de congestion tout en respectant les contraintes de séquencement au cours des phases de décollage et d’attérissage. Pour combattre le nombre de dimensions élevé de ce problème, nous choisissons un algorithme évolutionnaire multiobjectif avec une représentation indirecte du problème en se basant sur des ordonnanceurs gloutons. Enfin, nous étudions les performances et la robustesse de cette approche en utilisant le modèle stochastique défini précédemment. Ce travail est validé à l’aide de problèmes réels obtenus du Central Flow Management Unit en Europe, que l’on a aussi densifiés artificiellement.