Modèles sémantiques et raisonnements réactif et narratif, pour la gestion du contexte en intelligence ambiante et en robotique ubiquitaire
Auteur / Autrice : | Lyazid Sabri |
Direction : | Yacine Amirat |
Type : | Thèse de doctorat |
Discipline(s) : | Signal, Image, Automatique |
Date : | Soutenance le 01/07/2013 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Images, Signaux et Systèmes Intelligents (Créteil) - LISSI |
Jury : | Président / Présidente : Raja Chatila |
Examinateurs / Examinatrices : Yacine Amirat, Jean-Yves Tigli, Abdelghani Chibani | |
Rapporteurs / Rapporteuses : Rachid Alami, François Brémond |
Mots clés
Résumé
Avec l'apparition des paradigmes des systèmes ubiquitaires ou omniprésents et de l'intelligence ambiante, on assiste à l'émergence d'un nouveau domaine de recherche visant à créer des environnements ou écosystèmes intelligents pouvant offrir une multitude de services permettant d'améliorer la qualité de vie, l'état physique et mental, et le bien-être social des usagers. Dans cette thèse, nous nous focalisons sur la problématique de la représentation sémantique des connaissances et du raisonnement dans le cadre des systèmes à intelligence ambiante et des robots ubiquitaires. Nous proposons deux modèles sémantiques permettant d'améliorer les fonctions cognitives de ces systèmes en termes de gestion du contexte. Au premier modèle, de type ontologique, sont associés un langage de règles et un raisonnement réactif pour la sensibilité au contexte. Pour prendre en compte le caractère dynamique du contexte et assurer une prise de décision cohérente, le mode de raisonnement retenu garantit deux propriétés essentielles : la décidabilité et la non-monotonie. Le deuxième modèle, également de type ontologique, complète le modèle précédent en termes d'expressivité pour la représentation de contextes non-triviaux et/ou liés au temps. Il s'appuie sur des relations n-aires et une représentation narrative des événements pour inférer des causalités entre événements et reconnaitre des contextes complexes non-observables à partir d'événements passés et courants. Les modèles proposés ont été mis en oeuvre et validés sur la plateforme ubiquitaire d'expérimentation du LISSI à partir de trois scenarii d'assistance cognitive et de reconnaissance de contexte