Suivi temps-réel : matrices de covariance couleur-texture et commutation automatique de descripteur/opérateur
Auteur / Autrice : | Andrés Romero Mier y Teran |
Direction : | Lionel Lacassagne |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique et traitement du signal |
Date : | Soutenance le 03/12/2013 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020) |
Jury : | Président / Présidente : Thierry Chateau |
Examinateurs / Examinatrices : Lionel Lacassagne, Thierry Chateau, Guy Gogniat, Alice Caplier, Michèle Gouiffès, Alain Trémeau | |
Rapporteur / Rapporteuse : Guy Gogniat, Alice Caplier |
Résumé
Ces technologies ont poussé les chercheurs à imaginer la possibilité d'automatiser et émuler les capacités de perception visuels des animaux et de l'homme lui-même. Depuis quelques décennies le domaine de la vision par ordinateur a essayé plusieurs approches et une vaste gamma d'applications a été développée avec un succès partielle: la recherche des images basé sur leur contenu, la exploration de donnés à partir des séquences vidéo, la ré-identification des objets par des robots, etc. Quelques applications sont déjà sur le marché et jouissent déjà d'un certain succès commercial.La reconnaissance visuelle c'est un problème étroitement lié à l'apprentissage de catégories visuelles à partir d'un ensemble limité d'instances. Typiquement deux approches sont utilisées pour résoudre ce problème: l'apprentissage des catégories génériques et la ré-identification d'instances d'un objet un particulière. Dans le dernier cas il s'agit de reconnaître un objet ou personne en particulière. D'autre part, la reconnaissance générique s'agit de retrouver tous les instances d'objets qui appartiennent à la même catégorie conceptuel: tous les voitures, les piétons, oiseaux, etc.Cette thèse propose un système de vision par ordinateur capable de détecter et suivre plusieurs objets dans les séquences vidéo. L'algorithme pour la recherche de correspondances proposé se base sur les matrices de covariance obtenues à partir d'un ensemble de propriétés des images (couleur et texture principalement). Son principal avantage c'est qu'il utilise un descripteur qui permet l'introduction des sources d'information très hétérogènes pour représenter les cibles. Cette représentation est efficace pour le suivi d'objets et son ré-identification.Quatre contributions sont introduites dans cette thèse.Tout d'abord cette thèse s'intéresse à l'invariance des algorithmes de suivi face aux changements du contexte. Nous proposons ici une méthodologie pour mesurer l’importance de l'information couleur en fonction de ses niveaux d’illumination et saturation. Puis, une deuxième partie se consacre à l'étude de différentes méthodes de suivi, ses avantages et limitations en fonction du type d'objet à suivre (rigide ou non rigide par exemple) et du contexte (caméra statique ou mobile). Le méthode que nous proposons s'adapte automatiquement et utilise un mécanisme de commutation entre différents méthodes de suivi qui considère ses qualités complémentaires. Notre algorithme se base sur un modèle de covariance qui fusionne les informations couleur-texture et le flot optique (KLT) modifié pour le rendre plus robuste et adaptable face aux changements d’illumination. Une deuxième approche se appuie sur l'analyse des différents espaces et invariants couleur à fin d'obtenir un descripteur qui garde un bon équilibre entre pouvoir discriminant et robustesse face aux changements d'illumination.Une troisième contribution porte sur le problème de suivi multi-cibles ou plusieurs difficultés apparaissent : la confusion d'identités, les occultations, la fusion et division des trajectoires-détections, etc.La dernière partie se consacre à la vitesse des algorithmes à fin de fournir une solution rapide et utilisable dans les applications embarquées. Cette thèse propose une série d'optimisations pour accélérer la mise en correspondance à l'aide de matrices de covariance. Transformations de mise en page de données, la vectorisation des calculs (à l'aide d'instructions SIMD) et certaines transformations de boucle permettent l'exécution en temps réel de l'algorithme non seulement sur les grands processeurs classiques de Intel, mais aussi sur les plateformes embarquées (ARM Cortex A9 et Intel U9300).