Thèse soutenue

Plasmas dans l’eau et aux interfaces

FR  |  
EN
Auteur / Autrice : Ilya Marinov
Direction : Antoine RousseauSvetlana Starikovskaia
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 02/12/2013
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Ondes et Matière (Orsay, Essonne ; 1998-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique des plasmas (Palaiseau, Essonne ; 1997-....) - Laboratoire de Physique des Plasmas
Jury : Examinateurs / Examinatrices : Antoine Rousseau, Svetlana Starikovskaia, Jean-Michel Pouvesle, Peter Bruggeman, Thierry Belmonte, Catherine Krafft, Corinne Dupuy
Rapporteurs / Rapporteuses : Jean-Michel Pouvesle, Peter Bruggeman

Résumé

FR  |  
EN

L'intérêt croissant susciter par les applications biomédicales des plasmas non thermiques, inspire le développement de nouvelles sources plasmas. Les décharges à barrière diélectrique (DBD) ou les décharges couronne générées dans l'air ambiant ou dans le flux de gaz rare sont généralement utilisées. Production des plasmas directement dans un liquide a un grand potentiel pour les processus de stérilisation des substances liquides et pour le traitement extracorporel du sang. Les mécanismes physiques de formation d’une décharge électrique dans un milieu liquide ne sont toujours pas entièrement compris .La première partie de cette thèse examine le sujet de l'initiation et le développement de décharge nanoseconde dans les diélectriques liquides (eau déminéralisée, éthanol et n-pentane). La visualisation ombroscopique résolue en temps, la spectroscopie optique d'émission et les mesures électrique sont appliqués à l’étude d’une décharge électrique initiée sur une électrode à pointe positive.Nous avons montré que, selon l'amplitude de tension trois scénarios différents peuvent se produire dans des diélectriques polaires, notamment, la cavitation d'une bulle, le développement de décharge dans une cavité gazeuse (le mode ‘buisson’) et l'initiation de la décharge filamentaire (le mode ‘arborescent’) se propageant directement dans le liquide. La différence dans la formation et la propagation de deux modes de la décharge (‘buisson’ et ‘arbre’) révèle les mécanismes physiques étant très distincts.Dans la deuxième partie de ce travail, nous abordons la question d’interaction entre les plasmas froids atmosphériques avec les cellules vivantes in vitro et in vivo. L’étude porte sur le mécanisme de la mort cellulaire induite par le plasma. Cytométrie de flux avec deux marqueurs AnnexinV (AV) et de l'iodure de propidium (PI) a été appliquée pour l’analyse de la viabilité cellulaire. On montre l’induction de l' apoptose dans les cellules de T lymphocyte humain (Jurkat) et dans les cellules épithéliales (HMEC) traités par le plasma de DBD nanoseconde. Dans les souris nudes l'induction de l'apoptose et de la nécrose en fonction de la dose est observé par la microscopie électronique dans les coupes de l'épiderme. L'analyse histologique montre l’apparition des lésions importantes dans l'épiderme , derme, hypoderme et les muscles en fonction de la durée du traitement. Production de peroxyde d'hydrogène dans le milieu de culture (PBS) exposé au plasma de DBD est mesurée à l’aide d’une sonde fluorescente sélective (Amplex® Red). La viabilité des cellules de la thyroïde humaines ( HTori -3) et des cellules de mélanome (1205Lu) cellules démontre la dépendance nonmonotone de la concentration de H2O2. Le rôle majeur du peroxyde d'hydrogène produit par plasma et du champ électrique de la DBD est suggéré.