Modélisation des états dynamiques de vortex dans des ondes de densité de charge
Auteur / Autrice : | Tianyou Yi |
Direction : | Serguei Brazovski |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 24/09/2012 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | École doctorale Physique de la région parisienne (....-2013) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de physique théorique et modèles statistiques (Orsay, Essonne ; 1998-....) |
Jury : | Président / Présidente : Michel Héritier |
Examinateurs / Examinatrices : Serguei Brazovski, Michel Héritier, Denis Feinberg, Alexandre Bouzdine, Pierre Monceau, Nicolas Pavloff | |
Rapporteur / Rapporteuse : Denis Feinberg, Alexandre Bouzdine |
Mots clés
Mots clés contrôlés
Résumé
La formation des ondes de densité de charge (ODC) est un phénomène de brisure de symétrie qui apparaît dans systèmes électroniques, et particulièrement dans les conducteurs quasi-unidimensionnels. Elle est observée aussi bien dans les matériaux très anisotropes que les isotropes comme par exemple les supraconducteurs pnictures. L'ODC peut être vue comme une déformation sinusoïdale de la densité électronique et de la modulation du réseau, ou également comme un cristal de singulets électroniques. Dans un état d'ODC, les cellules élémentaires peuvent être modifiées en absorbant ou en rejetant des paires d'électrons. Un tel processus passe par des configurations topologiquement non triviales: des solitons et des dislocations, ou plus généralement des vortex d'ODC. Ces états inhomogènes peuvent être obtenus expérimentalement dans des nano-produits appelés ''mésa-jonctions'', et observés à l'aide d'un microscope à effet tunnel ou d’une radiographie par micro-diffraction. Afin de simuler ces expériences, nous avons réalisé un programme modélisant les états stationnaires d'ODC ainsi que leur dynamique transitoire à travers des géométries restreintes auxquelles sont appliquées une tension ou un courant. Le modèle prend en compte plusieurs champs en interaction non linéaire: le paramètre d'ordre complexe d'ODC, la distribution de champ électrique, ainsi que la densité et le courant des autres porteurs de charge. Nous avons utilisé une approche de type Ginzburg-Landau ainsi qu'une extension basée sur une propriété d'invariance chirale. A l'aide de ce programme, nous avons observé la création progressive de dislocations statiques dans les jonctions. La dynamique transitoire est alors très riche avec notamment des créations, des annihilations et des balayages de vortex multiples. Des chutes de tension apparaissent au centre des dislocations, créant ainsi des jonctions tunnel microscopiques à travers lesquelles transitent des paires électron-trou. Les résultats qualitatifs obtenus sont en très bon accord avec les observations expérimentales. Ce model peut aussi être étendu à tout type de cristaux électronique comme les cristaux de Wigner dans les hétéro-jonctions et les nano-fils, les ODC dans les composés de chaîne, les ondes de densité de spin dans les conducteurs organiques, ou encore les structures de bandes dans les oxydes dopés. La reconstruction des ODC dans les jonctions tunnel peut aussi trouver son importance dans l'étude des effets de champs sur les matériaux fortement corrélés induisant des brisures spontanées de symétries.