Thèse soutenue

Estimations pour les modèles de Markov cachés et approximations particulaires : Application à la cartographie et à la localisation simultanées.

FR  |  
EN
Auteur / Autrice : Sylvain Le Corff
Direction : Éric MoulinesGersende Fort
Type : Thèse de doctorat
Discipline(s) : Signal et Images
Date : Soutenance le 28/09/2012
Etablissement(s) : Paris, ENST
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Jury : Président / Présidente : Elisabeth Gassiat
Examinateurs / Examinatrices : Jean-Michel Marin
Rapporteurs / Rapporteuses : Arnaud Doucet, Gilles Pagès

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans cette thèse, nous nous intéressons à l'estimation de paramètres dans les chaînes de Markov cachées. Nous considérons tout d'abord le problème de l'estimation en ligne (sans sauvegarde des observations) au sens du maximum de vraisemblance. Nous proposons une nouvelle méthode basée sur l'algorithme Expectation Maximization appelée Block Online Expectation Maximization (BOEM). Cet algorithme est défini pour des chaînes de Markov cachées à espace d'état et espace d'observations généraux. Dans le cas d'espaces d'états généraux, l'algorithme BOEM requiert l'introduction de méthodes de Monte Carlo séquentielles pour approcher des espérances sous des lois de lissage. La convergence de l'algorithme nécessite alors un contrôle de la norme Lp de l'erreur d'approximation Monte Carlo explicite en le nombre d'observations et de particules. Une seconde partie de cette thèse se consacre à l'obtention de tels contrôles pour plusieurs méthodes de Monte Carlo séquentielles. Nous étudions enfin des applications de l'algorithme BOEM à des problèmes de cartographie et de localisation simultanées. La dernière partie de cette thèse est relative à l'estimation non paramétrique dans les chaînes de Markov cachées. Le problème considéré est abordé dans un cadre précis. Nous supposons que (Xk) est une marche aléatoire dont la loi des incréments est connue à un facteur d'échelle a près. Nous supposons que, pour tout k, Yk est une observation de f(Xk) dans un bruit additif gaussien, où f est une fonction que nous cherchons à estimer. Nous établissons l'identifiabilité du modèle statistique et nous proposons une estimation de f et de a à partir de la vraisemblance par paires des observations.