Etude expérimentale et modélisation des propriétés radiatives des mélanges gazeux de type CO2-N2 à très haute température en vue de l'application aux rentrées atmosphériques martiennes,
Auteur / Autrice : | Sebastien Depraz |
Direction : | Anouar Soufiani |
Type : | Thèse de doctorat |
Discipline(s) : | Energétique |
Date : | Soutenance le 28/11/2011 |
Etablissement(s) : | Châtenay-Malabry, Ecole centrale de Paris |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'énergétique moléculaire et macroscopique, combustion (Gif-sur-Yvette, Essonne) |
Jury : | Examinateurs / Examinatrices : Anouar Soufiani, Rodolphe Vaillon, Lionel Tessé, Sergeï Tashkun, Marie-Yvonne Perrin |
Rapporteur / Rapporteuse : Jean-Michel Hartmann, Rodolphe Vaillon |
Mots clés
Mots clés contrôlés
Résumé
La modélisation du rayonnement du CO2 à plus de 2000 K reste un défi pour la prédiction des transferts radiatifs à très haute température, en particulier pour le dimensionnement des protections thermiques des véhicules spatiaux entrant dans l’atmosphère de Mars. Le défi concerne aussi bien la constitution de bases de données que le développement de modèles permettant de réaliser des calculs couplés entre l’aérothermodynamique et les transferts radiatifs. Plusieurs bases de données spectroscopiques ont été développées dans les dernières décennies. Des simulations effectuées sur des mélanges CO2-N2 à l’équilibre ont montré que l’émission IR de CO2 reste importante, si ce n’est prédominante, jusqu’à 4000 K. Mais les données expérimentales permettant de vérifier leur précision à haute température sont peu nombreuses et limitées à la basse résolution spectrale, à des températures plus faibles, ou encore impliquent des incertitudes importantes. L’objectif principal de ces travaux est donc de fournir des données expérimentales à moyenne ou haute résolution spectrale et à haute température pour permettre de vérifier la précision des bases théoriques développées. Le mélange gazeux à très haute température dont nous mesurons les spectres d’émission est obtenu grâce à une décharge micro-ondes traversant un flux de CO2 pur. Aux températures atteintes (environ 6000 K), le mélange est à l’équilibre thermodynamique local (ETL) et contient principalement les espèces suivantes : CO2, CO, O2 et O. La mesure des spectres est effectuée grâce à un spectromètre à transformée de Fourier dans l’infrarouge. L’émission des bandes harmoniques de CO dans la région 3800-4400 cm puissance-1 permet la détermination précise du champ de température radial dans le plasma. L’émission théorique de CO2, que ce soit en coefficient d’émission ou en luminance intégrée sur un chemin optique, dans les régions de 2,7 _m et 4,3 _m, est alors calculée à partir des bases de données spectroscopiques et comparée aux mesures. Les bases de données spectroscopiques étudiées sont la base CDSD-4000 récemment publiée et EM2C-1994 qui est plus ancienne. Les résultats montrent que cette dernière est suffisante pour des applications classiques en combustion, nécessitant typiquement de faibles résolutions spectrales et des températures inférieures à 2500 K, pour lesquelles elle fut initialement développée. En revanche, la base CDSD-4000 est généralement en très bon accord avec les données expérimentales, en particulier dans les ailes de bandes ce qui indique sa fiabilité pour des applications à très haute température. Bien que des comparaisons aient révélé que les positions de raies pour les transitions à haute énergie manquent de précision dans cette base, le degré élevé de recouvrement des raies dans les régions 2,7 _m et 4,3 _m devrait grandement limiter l’impact de cette imprécision dans la pratique. L’autre objectif de ces travaux concerne la difficulté que pose la couplage entre les calculs d’aérothermodynamique et de transferts radiatifs. En effet, les calculs de transferts iv radiatifs impliquant des molécules polyatomiques doivent prendre en compte un nombre très important de transitions rovibroniques. Par conséquent, un modèle approché de propriétés radiatives (modèle Statistique à Bandes Etroites) a été développé et sa précision a été étudiée pour les systèmes électroniques optiquement épais des molécules carbonées diatomiques rencontrées dans les problèmes de rentrées atmosphériques martiennes. Ces systèmes sont CO 4eme positif, C2 Swan, et CN violet. Diverses conditions à l’ETL et hors ETL, ainsi que différents mélanges ont été étudiés pour différents régimes d’élargissement de raies. Les comparaisons effectuées avec les calculs ''raie par raie'' ont révélé d’excellents accords. Les paramètres de ce modèle ont été tabulés en fonction de deux températures, Tv (température vibrationnelle) et Tr (température rotationnelle).