Thèse soutenue

Rejeu de chemin et localisation monoculaire : application du Visual SLAM sur carte peu dense en environnement extérieur contraint

FR  |  
EN
Auteur / Autrice : Thomas Féraud
Direction : Roland Chapuis
Type : Thèse de doctorat
Discipline(s) : Vision pour la Robotique
Date : Soutenance le 09/12/2011
Etablissement(s) : Clermont-Ferrand 2
Ecole(s) doctorale(s) : École doctorale des sciences pour l'ingénieur (Clermont-Ferrand)
Partenaire(s) de recherche : Equipe de recherche : LAboratoire des Sciences et Matériaux pour l’Electronique, et d’Automatique
Laboratoire : (LASMEA) Laboratoire des sciences et matériaux pour l'électronique et d'automatique
Jury : Président / Présidente : Michel Devy
Examinateurs / Examinatrices : François Charpillet, David Filliat, Udo Frese, Romuald Aufrère, Paul Checchin
Rapporteur / Rapporteuse : François Charpillet, David Filliat, Udo Frese

Résumé

FR  |  
EN

Dans le cadre de la robotique mobile en environnement extérieur, les concepts de localisation et de perception sont au coeur de toute réalisation. Aussi, les travaux menés au sein de cette thèse visent à rendre plus robustes des processus de localisation existants sans pour autant augmenter de manière notable leur complexité. La problématique proposée place un robot au sein d'un environnement potentiellement dangereux avec pour objectif de suivre une trajectoire établie comme sécurisée avec une carte aussi simple que possible. De plus, des contraintes fortes sont imposées tant dans la réalisation (système peu onéreux, indétectable) que dans le résultat (une exécution temps-réel et une localisation en permanence dans une tolérance de 10 cm autour de la trajectoire de référence). Le capteur extéroceptif choisi pour mener à bien ce projet est une caméra tandis que l'estimation de la pose du véhicule à chaque instant est réalisée par un filtre de Kalman dans sa version étendue. Les principaux problèmes d'estimation résident dans la non-linéarité des modèles d'observation et les contributions apportées apportent quelques solutions : - une méthode de calcul exacte de la propagation des incertitudes de l'espace monde vers l'espace capteur (caméra) ; - une méthode de détection des principaux cas de divergence du filtre de Kalman dans le calcul de la phase de mise à jour ; - une méthode de correction du gain de Kalman. Ce projet avait deux objectifs : réaliser une fonction de localisation répondant aux contraintes fortes préalablement évoquées, et permettre à un véhicule de quitter temporairement la trajectoire de référence, suite à la prise en main de l'opérateur pour ensuite reprendre le cours normal de sa mission au plus près de la trajectoire de référence. Ce deuxième volet fait intervenir un cadre plus large dans lequel il faut, en plus de la localisation, cartographier son environnement. Cette problématique, identifiée par l'acronyme SLAM (Simultaneous Localization And Mapping), fait le lien avec les deux dernières contributions de ces travaux de thèse : - une méthode d'initialisation des points qui constitueront la carte SLAM ; - une méthode pour maintenir la cohérence entre la carte de référence et la carte SLAM. Des résultats sur des données réelles, étayant chacune des contributions, sont présentés et illustrent la réalisation des deux principaux objectifs.