Thèse soutenue

Généralisation de l'ordre et des paramètres de macro-actions par apprentissage basé sur l'explication. Extension de l'apprentissage par explications sur l'ordre partiel

FR  |  
EN
Auteur / Autrice : Huihua Li
Direction : Philippe Coiffet
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance en 1992
Etablissement(s) : Paris 6

Résumé

FR

Les methodes traditionnelles d'apprentissage comme l'apprentissage par macro-actions de fikes et l'apprentissage par explications (ebl) traitent les plans totalement ordonnes. Elles generalisent seulement les actions et les conditions sous lesquelles le plan peut etre applique, mais jamais elles ne transforment l'ordre des actions en un ordre partiel moins strict dans lequel le plan peut aussi etre correctement execute. Une methode est proposee pour construire, a partir d'une sequence d'actions du type strips realisant une conjonction de buts, des macro-actions partiellement ordonnees dont chacune exige l'ensemble des conditions les plus faibles pour sa reutilisation. Elle est aussi valable pour generaliser les plans partiellement ordonnes. Les actions sont generalisees dans la table triangulaire de fikes. On introduit des axiomes du domaine pour generer les contraintes sur les parametres des actions. Ces contraintes, avec celles issues des destructions des actions, assurent la consistance des etats generalises. L'ensemble de contraintes est transforme en une disjonction ou chaque element definit un ensemble de substitutions admissibles d'une particularisation de la macro-action. En completant la table par des informations sur les destructions, on obtient l'explication globale sur l'ordre partiel des actions. Puis, on represente toutes les relations d'ordre necessaires par un (multi)graphe. L'exploitation de ce graphe permet d'expliciter la dependance entre les ordres partiels generalises et les contraintes sur les parametres et d'obtenir l'ensemble des solutions