Thèse soutenue

Finance quantitative à l'échelle de la microstructure : trading algorithmique et régulation

FR  |  
EN
Auteur / Autrice : Bastien Baldacci
Direction : Mathieu RosenbaumDylan Possamaï
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 14/05/2021
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Centre de mathématiques appliquées de l'Ecole polytechnique (Palaiseau ; 1974-....)
Jury : Président / Présidente : Olivier Guéant
Examinateurs / Examinatrices : Mathieu Rosenbaum, Dylan Possamaï, Huyên Pham, Mike Ludkovski, Thibaut Mastrolia, Sophie Laruelle, Nizar Touzi
Rapporteur / Rapporteuse : Huyên Pham, Mike Ludkovski

Résumé

FR  |  
EN

Cette thèse est divisée en trois parties. Dans la première partie, nous appliquons la théorie Principal-Agent à certains problèmes de microstructure de marché. Premièrement, nous développons une politique d’incitation afin d’améliorer la qualité de la liquidité de marché dans le cadre d’une activité de market-making dans un lit et un dark pool gérés par la même bourse d’échange. Puis, nous adaptions ce design d’incitations à la régulation de l’activité de market-making lorsque plusieurs market-makers sont en concurrence sur une plateforme. Nous proposons également une forme d’incitation basée sur le choix de tailles de ticks asymétriques à l’achat et à la vente sur un actif. Nous abordons ensuite la question de la conception d’un marché de produits dérivés, en utilisant une méthode de quantization pour sélectionner les options listées sur la plateforme, et la théorie Principal-Agent pour créer des incitations pour un market-maker d’options. Enfin, nous développons un mécanisme d’incitations robuste à la spécification de modèle pour augmenter l’investissement dans les obligations vertes.La deuxime partie de cette thèse est consacrée au market-making d’options en grande dimension. En faisant l’hypothèse de grecques constants nous proposons dans un premier temps un modèle pour traiter les options de longue maturité. Puis nous proposons une approximation de la fonction valeur permettant de traiter les grecques non-constants et les options de courte maturité. Enfin, nous développons un modèle pour la dynamique haute fréquence de la surface de volatilité implicite. En utilisant des processus Hawkes multidimensionnels, nous montrons comment ce modèle peut reproduire de nombreux faits stylisés tels que le skew, le smile et la structure par termes de la surface.La dernière partie de cette thèse est consacrée aux problèmes de trading optimal en grande dimension. Dans un premier temps, nous développons un modèle pour le trading optimal d’actions listées sur plusieurs plateformes. Pour un grand nombre de plateformes, nous utilisons une méthode d’apprentissage par renforcement profond pour calculer les contrôles optimaux du trader. Puis, nous proposons une méthodologie pour résoudre des problèmes de trading de façon approximativement optimale sans utiliser la théorie du contrôle stochastique. Nous présentons un modèle dans lequel un agent exhibe un comportement approximativement optimal s’il utilise le gradient de la trajectoire macroscopique comme signal de court terme. Enfin, nous présentons deux nouveaux développements sur la littérature d’exécution optimale. Tout d’abord, nous montrons que nous pouvons obtenir une solution analytique au problème d’exécution d’Almgren-Chriss avec mouvement Brownien géométrique et pénalité quadratique. Deuxièmement, nous proposons une application du modèle de carnet d’ordres latent au problème d’exécution optimale d’un portefeuille d’actifs, dans le cadre de stress tests de liquidité.