Développement de composites polypropylène renforcés par des fibres de chanvre pour application automobile
Auteur / Autrice : | Laurent Puech |
Direction : | Anne Bergeret |
Type : | Thèse de doctorat |
Discipline(s) : | Génie des procédés |
Date : | Soutenance le 29/11/2017 |
Etablissement(s) : | Montpellier |
Ecole(s) doctorale(s) : | GAIA (Montpellier ; École Doctorale ; 2015-...) |
Partenaire(s) de recherche : | Laboratoire : Centre des Matériaux des Mines d'Alès (Alès ; 2000-2019) |
Jury : | Président / Présidente : Jean-François Chailan |
Examinateurs / Examinatrices : Anne Bergeret, Jean-François Chailan, Françoise Berzin, Antoine Le Duigou, Nicolas Le Moigne, Stéphane Corn, Fabienne Touchard, Xavier Rouau | |
Rapporteurs / Rapporteuses : Françoise Berzin, Antoine Le Duigou |
Mots clés
Résumé
Face à la nécessité de trouver des alternatives aux ressources d’origine fossile et de limiter les impacts environnementaux de l’activité humaine, un important effort de recherche est actuellement en cours pour favoriser et accroître l’utilisation de produits issus de ressources renouvelables, comme les fibres végétales, dans la conception de pièces industrielles. Toutefois, de nombreux verrous scientifiques et technologiques restent encore à lever avant de pouvoir valoriser de façon fiable et durable ces fibres dans un contexte technique exigeant tel que celui du secteur l’automobile. Ainsi, l’amélioration de la qualité de l’interface fibres végétales / matrice polymère est un enjeu de taille car elle constitue une condition permettant de satisfaire les performances mécaniques requises telles que la rigidité, la résistance ou la tenue au choc. Dans ce contexte, l’objectif de la thèse a été le développement de fibres courtes de chanvre à propriétés de surface maitrisées et ciblées. Des solutions de fonctionnalisation de surface applicables par des procédés industrialisables ont été développées dans le but d’incorporer ces fibres dans une matrice polypropylène (PP). Les fibres de chanvre ont ainsi été traitées selon différentes stratégies de fonctionnalisation incluant l’utilisant du polypropylène greffé anhydride maléique (PP-g-MA), d’organosilanes, d’un acide aminé, d’isocyanates et d’un polyuréthane. Deux procédés de traitement à faible impact environnemental ont été comparés : le sprayage direct des fibres par les molécules de fonctionnalisation et l’incorporation de ces molécules par extrusion réactive. Les traitements en extrusion réactive se sont montrés plus efficaces que ceux réalisés par sprayage dans le cas du PP-g-MA. Trois voies de fonctionnalisation se sont avérées pertinentes au regard des propriétés mécaniques visées : i) l’utilisation de PP-g-MA seul en extrusion réactive ; ii) la fonctionnalisation par sprayage d’un aminosilane ou d’un acide aminé couplée à l’incorporation du PP-g-MA en extrusion réactive. S’appuyant sur le développement de moyens expérimentaux et d’analyses spécifiques, l’étude du comportement au choc des biocomposites a montré que les composites renforcés fibres de chanvre permettent d’absorber d’avantage d’énergie que les composites PP / verre (à taux volumique de renfort identique) pour une longueur de fissuration similaire. Une modélisation par éléments finis du comportement au choc des composites étudiés est également proposée.