Thèse en cours

Stabilité de couches limites en mécanique des fluides, bifurcations et solitons

FR  |  
EN
Auteur / Autrice : Ignacio Acevedo ramos
Direction : Frédéric Rousset
Type : Projet de thèse
Discipline(s) : Mathématiques fondamentales
Date : Inscription en doctorat le 01/10/2024
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard
Partenaire(s) de recherche : Laboratoire : Laboratoire de Mathématiques d'Orsay
Equipe de recherche : Analyse numérique et équations aux dérivées partielles
Référent : Faculté des sciences d'Orsay

Résumé

FR  |  
EN

Ce projet de thèse porte sur trois problèmes de stabilité issus de phénomènes physiques. Dans un premier temps, il s'agit d'étudier la stabilité linéaire de la couche limite d'Ekman, une solution aux équations de Navier-Stokes-Coriolis pour les fluides incompressibles en rotation, pour des grands nombres de Reynolds, en s'inspirant de travaux sur des profils de cisaillement sans terme de Coriolis. Ensuite, la thèse aborde la transition vers l'instabilité dans le cas non-linéaire, en étudiant le phénomène dans un demi-espace, contrairement aux approches antérieures. Enfin, une partie est consacrée à la stabilité asymptotique des kinks dans des champs de Yang-Mills, avec une extension de la théorie de l'explosion stable en temps fini.