Unbalanced and Linear Οptimal Τranspοrt fοr a Reliable Estimatiοn οf the Waserstein Distance
Auteur / Autrice : | Guillaume Mahey |
Direction : | Gilles Gasso |
Type : | Projet de thèse |
Discipline(s) : | Mathematiques |
Date : | Inscription en doctorat le 01/11/2021 Soutenance le 13/11/2024 |
Etablissement(s) : | Normandie |
Ecole(s) doctorale(s) : | École Doctorale Mathématiques, Information, Ingénierie des Systèmes |
Partenaire(s) de recherche : | Laboratoire : LABORATOIRE D'INFORMATIQUE DE TRAITEMENT DE L'INFORMATION ET DES SYSTEMES |
Établissement co-accrédité : INSA Rouen Normandie | |
Jury : | Examinateurs / Examinatrices : Gilles Gasso, Laetitia Chapel, Alain Rakotomamonjy, Elsa Cazelles, Julie Delon, Kimia Nadjahi, Nicolas Bonneel |
Rapporteur / Rapporteuse : Julie Delon, Nicolas Bonneel |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Dans le contexte de l'apprentissage automatique, plusieurs problèmes peuvent se formuler comme des problèmes de comparaison entre distributions. La théorie mathématique du transport optimal permet une comparaison entre deux mesures de probabilité. Bien que très élégante en théorie, le transport optimal (TO) souffre de plusieurs inconvénients en pratique, notamment la charge de calcul, le risque de surapprentissage (overfitting) et sa sensibilité aux artefacts d'échantillonnage. Tout cela a motivé l'introduction de variantes à la fonction de perte associée au TO dans la communauté du machine learning. Dans cette thèse, nous proposons de nouvelles variantes afin, d'une part, de réduire la charge computationnelle et statistique et, d'autre part, la sensibilité aux artefacts d'échantillonnage de la perte TO. Pour ce faire, nous nous sommes appuyés sur les distributions intermédiaires introduites à la fois par les variantes de TO linéaire et de TO déséquilibré.