Thèse en cours

Étude expérimentale de systèmes d'injection innovants à faibles émissions de NOx et de suie pour la technologie de combustion giratoire, utilisant des diagnostics laser avancés

FR  |  
EN
Auteur / Autrice : Andrei-silviu Milea
Direction : Frederic GrischGilles Cabot
Type : Projet de thèse
Discipline(s) : Mecanique des fluides, energetique, thermique, combustion, acoustique
Date : Inscription en doctorat le 01/11/2020
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École Doctorale Physique, Sciences de l'Ingénieur, Matériaux, Énergie
Partenaire(s) de recherche : Laboratoire : COMPLEXE DE RECHERCHE INTERPROFESSIONNEL EN AEROTHERMOCHIMIE
Établissement co-accrédité : INSA Rouen Normandie
Jury : Examinateurs / Examinatrices : Gilles Cabot, Frederic Grisch, Stéphane Richard, Benedicte Cuenot, Vincent Moureau, Marc Bellenoue, Antonio Andreini, Thomas Behrendt
Rapporteur / Rapporteuse : Marc Bellenoue, Antonio Andreini

Résumé

FR  |  
EN

Les effets anthropogéniques sur l’environnement posent un défi majeur pour l’industrie aéronautique. Des réglementations de plus en plus strictes et la nécessité de rendre le transport aérien durable orientent les recherches actuelles vers des systèmes propulsifs innovants. Dans ce contexte, Safran Helicopter Engines développe sa technologie brevetée de combustion giratoire (SCT), visant à améliorer les performances des moteurs d’hélicoptères. Déjà implémentée sur le moteur Arrano, cette technologie est davantage optimisée pour réduire significativement les émissions de NOx et de suies. Dans le cadre du programme européen LOOPS, deux nouveaux systèmes d’injection de carburant sont étudiés : l’un conçu pour un régime riche dans une chambre RQL, et l’autre pour une combustion pauvre. Cette thèse évalue expérimentalement ces systèmes à l’aide de diagnostics laser avancés, adaptés aux environnements réactifs à haute pression. Le banc HERON, développé au CORIA, permet d’analyser leurs performances de combustion et évaluer les émissions dans des conditions représentatives des moteurs d’hélicoptères : pressions de 8 à 14 bar, températures d’entrée d’air de 570 à 750 K, et richesses de 0,6 à 1,67. Des diagrammes de stabilité de flamme sont établis, suivis d’analyses des propriétés du spray liquide par PDPA (Phase Doppler Particle Anemometry). Les champs aérodynamiques sont mesurés en conditions réactive et non-réactive par PIV (Particle Imaging Velocimetry) ultra-rapide à 10 kHz. La structure des flammes est caractérisée par PLIF-OH, tandis que la PLIF-kérosène permet d’étudier l’évaporation du carburant en détectant les mono- et di- aromatiques. Les diagnostics couplés simultanément PLIF-NO, PLIF-OH et PLIF-kérosène corrèlent les structures des flammes, les distributions des phases liquide et vapeur, et les zones de formation de NO. De même manière, la PLII (Planar Laser-Induced Incandescence) couplé avec PLIF-OH, PLIF-kérosène permets d’analyser les mécanismes de formation et d’oxydation des suies. Des méthodes spécifiques déterminent des distributions 2D des concentrations de NO, OH et des fractions volumiques de suies. Les résultats montrent une flamme asymétrique pour l’injecteur riche, avec une efficacité de combustion élevé dans la partie supérieure grâce à une injection liquide augmenté localement. Malgré des richesses élevées, les niveaux de suies restent modérés, tandis que le NO se forme principalement près de la flamme, confirmant le mécanisme thermique de Zeldovich. L’injecteur en régime pauvre présente une structure de flamme typique des flammes swirlées stratifiées, malgré la légère asymétrique. Une meilleure évaporation du carburant y favorise une combustion plus efficace, réduisant la longueur de flamme et les NO, grâce à des températures de flamme plus basses. Cependant, des niveaux modérés de suies sont également observés malgré le régime pauvre. Les conditions opératoires influencent fortement les performances. À haute pression, l’atomisation du spray est accélérée, l’angle d’expansion du spray augmente, et les zones de recirculation interne sont renforcées, modifiant la structure des flammes. L’augmentation des émissions de suies par la haute pression est observée pour l’injecteur en régime riche, gardant une richesse constante sur l’ensemble des conditions testées, tandis que les niveaux de NO restent stables. Pour l’injecteur en régime pauvre, les conditions réactives avec une richesse minimale à haute pression atténuent les effets de la pression, stabilisant la production de suies tout en réduisant les concentrations de NO. Ces résultats mettent en évidence le potentiel des deux systèmes d’injection pour optimiser les performances tout en réduisant les émissions des futurs moteurs d’hélicoptères.