Thèse soutenue

Reconstruction de phase par la géométrie non-Euclidienne de Bregman

FR  |  
EN
Auteur / Autrice : Jean-Jacques Godeme
Direction : Jalal Fadili
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 15/06/2024
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale mathématiques, information et ingénierie des systèmes (Caen)
Partenaire(s) de recherche : Laboratoire : Groupe de recherche en informatique, image, automatique et instrumentation de Caen (1995-....)
Établissement co-accrédité : Université de Caen Normandie (1971-....)
Jury : Examinateurs / Examinatrices : Laure Blanc-Féraud, David Russell Luke, Clarice Poon, Philippe Amra, Irène Jaming, Irène Waldspurger
Rapporteur / Rapporteuse : Laure Blanc-Féraud, David Russell Luke

Résumé

FR  |  
EN

Dans ce travail, nous nous intéressons au problème de reconstruction de phase de signaux à valeurs réelles en dimension finie, un défi rencontré dans de nombreuses disciplines scientifiques et d’ingénierie. Nous explorons deux approches complémentaires : la reconstruction avec et sans régularisation. Dans les deux cas, notre travail se concentre sur la relaxation de l’hypothèse de Lipschitz-continuité généralement requise par les algorithmes de descente du premier ordre, et qui n’est pas valide pour la reconstruction de phase lorsqu’il formulée comme un problème de minimisation. L’idée clé ici est de remplacer la géométrie euclidienne par une divergence de Bregman non euclidienne associée à un noyau générateur approprié. Nous utilisons un algorithme de descente miroir ou de descente à la Bregman avec cette divergence pour résoudre le problème de reconstruction de phase sans régularisation. Nous démontrons des résultats de reconstruction exacte (à un signe global près) à la fois dans un cadre déterministe et avec une forte probabilité pour un nombre suffisant de mesures aléatoires (mesures Gaussiennes et pour des mesures structurées comme la diffraction codée). De plus, nous établissons la stabilité de cette approche vis-à-vis d’un bruit additif faible. En passant à la reconstruction de phase régularisée, nous développons et analysons d’abord un algorithme proximal inertiel à la Bregman pour minimiser la somme de deux fonctions, l’une étant convexe et potentiellement non lisse et la seconde étant relativement lisse dans la géométrie de Bregman. Nous fournissons des garanties de convergence à la fois globale et locale pour cet algorithme. Enfin, nous étudions la reconstruction sans bruit et la stabilité du problème régularisé par un a priori de faible complexité. Pour celà, nous formulons le problème comme la minimisation d’une objective impliquant un terme d’attache aux données non convexe et un terme de régularisation convexe favorisant les solutions conformes à une certaine notion de faible complexité. Nous établissons des conditions pour une reconstruction exacte et stable et fournissons des bornes sur le nombre de mesures aléatoires suffisants pour de garantir que ces conditionssoient remplies. Ces bornes d’échantillonnage dépendent de la faible complexité des signaux à reconstruire. Ces résultats nouveaux permettent d’aller bien au-delà du cas de la reconstruction de phase parcimonieuse.